Near-IR multi-quantum-well SiGe detectors show promise for photonics integration

April 4, 2012
High-quality single-crystal silicon-germanium (SiGe) multi-quantum-well layers were epitaxially grown on silicon substrates by researchers at Bilkent University, the Massachusetts Institute of Technology, Korea University, and the Masdar Institute of Science and Technology.

High-quality single-crystal silicon-germanium (SiGe) multi-quantum-well layers were epitaxially grown on silicon substrates by researchers at Bilkent University (Ankara, Turkey), the Massachusetts Institute of Technology (Cambridge, MA), Korea University (Seoul, South Korea), and the Masdar Institute of Science and Technology (Abu Dhabi, UAE). The layers were fashioned into mesa-structured p-i-n photodetectors functioning at telecommunications wavelengths with reverse leakage currents of about 10 mA/cm2 and responsivities above 0.1 A/W in the 1300 to 1600 nm range. The spectral response of the photodetectors was voltage-tunable via altering the reverse bias, shifting the absorption edge by tens of nanometers.

The creation of GeSi devices on silicon is important for large-scale optical and optoelectronic circuits, as SiGe fabrication is compatible with complementary metal-oxide semiconductor (CMOS) technologies used to fabricate silicon computer chips. The ten quantum wells for the p-i-n detectors consisted of 10-nm-thick germanium wells and 20-nm-thick Si0.1Ge0.9 barriers, with the strained germanium lattice contributing to a high light absorption. Photodiodes were made with mesa diameters ranging between 20 and 120 μm; for devices with mesa areas less than 100 μm2, the RC time constant was estimated to be below one picosecond. Contact Ali Okyay at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!