Slow-light lidar scans independently in two dimensions

Feb. 9, 2012
Researchers from the University of Rochester and the University of Ottawa who had previously demonstrated the one-dimensional (1D) steering of a lidar beam using slow light have now used two independent slow-light mechanisms to steer a lidar beam in two dimensions.
Slow-light lidar uses stimulated Brillouin scattering and dispersive delay to steer independently in x and y
Slow-light lidar uses stimulated Brillouin scattering and dispersive delay to steer independently in x and y

Researchers from the University of Rochester (Rochester, NY) and the University of Ottawa (Ottawa, ON, Canada) who had previously demonstrated the one-dimensional (1D) steering of a lidar beam using slow light have now used two independent slow-light mechanisms to steer a lidar beam in two dimensions. Their previous system had used dispersive delay for 1D steering; to this, they have now added stimulated Brillouin scattering (SBS) for steering in the orthogonal dimension.

The original 1D system had three apertures (channels) in a row; the 2D system has three channels also, but arranged in an L shape. (These later versions can have many more channels.) The SBS generator includes 3.3 km of dispersion-shifted fiber (DSF) with a 10.5 GHz Brillouin frequency shift. An SBS slow-light module consists of 2.2 km of DSF with a counterpropagating pump field. Controlling the power of the pump field tunes the delay. Tests showed precise phase-locking among all three channels; simulated steering in the x and y directions applied by translation stages were independently compensated by the two delay mechanisms. Contact Zhimin Shi at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!