Algorithm is faster than FFT for all sparse signals

Feb. 9, 2012
Researchers at the Massachusetts Institute of technology (Cambridge, MA) have developed two algorithms that are faster than the fast Fourier transform (FFT) for all sparse signals.

Being able to compute the Fourier transform of an input signal is crucial in photonics—for example, in determining the spatial frequencies in an image. The standard method of computing a discrete Fourier transform (DFT) is by using the fast Fourier transform (FFT) algorithm. However, algorithms faster than the FFT would be desirable. Researchers at the Massachusetts Institute of technology (Cambridge, MA) have developed two algorithms that are faster than the FFT for all sparse signals. (A sparse signal is one in which some of its Fourier coefficients are near enough to zero that they can be ignored.) While other algorithms have previously been developed to improve on the FFT for sparse signals, none of them have improved on the FFT’s runtime for the whole range of sparse signals.

For a signal with k nonzero Fourier coefficients, and a length n of the input signal that is a power of 2, the researchers show two new DFT algorithms. The first is an O(k log n)-time algorithm for the exactly k-sparse case (where k is small). (O means “on the order of.”) The second is an O(k log n log(n/k))-time algorithm for the general case. In contrast, the FFT computes the DFT in O(n log n) time. Contact Haitham Hassanieh at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!