Microspectrometer uses donut-shaped resonators for higher resolution

July 1, 2011
An 81-channel microspectrometer with 2-μm-diameter singlemode microdonut resonators as its sensing elements is vastly shrunken in size compared to conventional spectrometers, but without sacrificing resolution.

An 81-channel microspectrometer with 2-μm-diameter singlemode microdonut resonators as its sensing elements is vastly shrunken in size compared to conventional spectrometers, but without sacrificing resolution. Fabricated on a silicon-on-insulator chip, the instrument was developed at the Georgia Institute of Technology (Atlanta, GA) for integrated lab-on-a-chip sensing applications.

Tunable-laser light in the 1550 nm range from an input-bus waveguide enters the microdonut array, with each microdonut resonator tapping only a small portion of the incoming light; each resonator is a unique channel and has a slightly different diameter. In a microdonut resonator, the fundamental radial mode interacts only with the donut’s outer wall; this is in contrast to a more conventional microring resonator, in which the light interacts with the inner and outer walls. Less interaction means a higher quality (Q) factor); the microdonuts have a loaded Q of 30,000 and an intrinsic Q of 80,000. The signal is collected by imaging from the top of the chip. The device achieved 0.6 nm resolution over a spectral range of more than 50 nm with a footprint less than 1 mm2. The instrument can be integrated with devices including sensors, optoelectronics, and microfluidic channels for use in biological, chemical, medical, and pharmaceutical applications.

Contact Ali Adibi at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!