LASERS FOR SENSING: WGM microresonator narrows laser-diode linewidth to 200 Hz

Lasers with very long coherence lengths have numerous uses that include lidar, optical communications, interferometry, monitoring smart structures, and, in the mid-infrared (IR), sensing biomolecules. Achieving the narrow spectral linewidth that is required for a long coherence length makes for complicated and expensive lasers, although complexity and size can be somewhat reduced by going with a semiconductor-laser design. Now, engineers at OEwaves (Pasadena, CA) have developed a compact, rugged, production-worthy semiconductor laser with a sub-kilohertz linewidth stabilized with a whispering-gallery-mode (WGM) microresonator.

The 3 mW production model, which is built into a standard butterfly package and has a fiber-optic (either singlemode or polarization-maintaining singlemode) pigtail, contains a commercial laser diode coupled via resonant optical feedback to a high-Q WGM resonator. While standard wavelengths include the telecommunications C- and L-bands (both in the 1550 nm region), the design itself is much more versatile and can be used to create narrow-linewidth lasers with wavelengths ranging from 390 to 2900 nm and, with the use of mid-IR semiconductor sources, much longer wavelengths.

Surface Rayleigh backscattering

The WGM resonator is made of calcium fluoride (CaF2), although magnesium fluoride can also be used (see figure).1 A distributed-feedback laser diode is coupled via a prism to the 2-mm-diameter microresonator, which has an unloaded Q of about 2 × 109, which changes to about 1 × 109 with the prism-coupling. The coupling of the laser to the resonator occurs as a result of surface Rayleigh backscattering in the resonator, leading to injection-locking.

Click to Enlarge
A crystalline WGM microresonator made of CaF2 has an unloaded Q factor of 2 × 109. Its extremely high Q results in significant surface Rayleigh backscattering (the lower the losses elsewhere, the more important becomes the Rayleigh scattering), allowing the resonator to be coupled to a distributed-feedback semiconductor laser. The result is a narrowing of the laser's linewidth to less than 200 Hz. (Photo originally appeared in "Crystalline resonators add properties to photonic devices," Vladimir S. Ilchenko, Anatoliy A. Savchenkov, Andrey B. Matsko, David Seidel, and Lute Maleki, authors; SPIE Newsroom, Feb. 17, 2010; doi: 10.1117/2.1201002.002536)

The laser diode and resonator are both mounted to a thermoelectric cooler for wavelength stability, also allowing the laser to be thermally tuned over a 2 nm range. The coupling reduces the laser diode's natural linewidth by a factor of more than 10,000, resulting in an instantaneous linewidth of less than 200 Hz. Long-term drift is less than 10 MHz per day; the laser can be modulated at rates between 0 and 20 MHz with DC coupling and 200 MHz to 1 GHz with AC coupling. The CaF2 crystal is environmentally stable with good thermal and mechanical properties that make it vibrationally insensitive and easy to thermally stabilize, says Lute Maleki, president and CEO of OEwaves. In addition, the laser's monolithic construction makes the entire unit insensitive to vibration.

OEwaves has been producing these lasers for the company's own use in its microwave-photonics products—filters, oscillators, and receivers—for two years. For wider use, OEwaves introduced the laser prototype units at SPIE's Photonics West 2011, which was held in January of this year in San Francisco, CA. The company will have its first production units ready in June.

"A very important feature of this laser is that it offers the same high coherence in spectral regions for which narrow-linewidth lasers do not exist," says Maleki. "This includes the 1064 nm wavelength range, where lasers with a few-kilohertz linewidth currently exist but do not adequately address sensing requirements. Also, other spectral regions such as the 2-to-6-μm region lack availability of narrowline lasers. Here, many sensing applications relating to biochemical molecules will be enabled by the capability this narrowline laser provides."

Next are plans to combine the laser architecture with high-power semiconductor lasers and external amplifiers to offer narrow linewidth at powers competitive with fiber lasers, notes Maleki. OEwaves also intends to produce visible and UV lasers to support applications in spectroscopy, atomic physics, and other emerging applications in these spectral regions. —John Wallace

1. W. Liang et al., Opt. Lett., 35, 16 (Aug. 15, 2010).

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Most Popular Articles


Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...
White Papers

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...
Technical Digests

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

FREEFORM OPTICS: Top-notch capabilities lead to expanded possibilities

The use of free-form aspherical surfaces in an optical system can give it abilities impossible to...

Click here to have your products listed in the Laser Focus World Buyers Guide.



AFL Recipient of Three Technology Patents

10/03/2013 Five AFL associates were recognized for receiving patent awards for their work developing new pro...

AFL Introduces Fujikura Fixed V-groove Single Fiber

10/03/2013 AFL introduces the Fujikura 19S fusion splicer, a new fixed v-groove single fiber splicer, the la...

AFL’s Five-Year Warranty Sets New Standard

10/03/2013 AFL increased the warranty period on NOYES® Optical Power Meters (OPM), Optical Light Sources (OL...

AFL Introduces New Family of NYFORS™ Recoating Products

10/03/2013 AFL now offers Nyfors Teknologi AB’s new family of recoating products including the ReCoater 2™, ...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS