Microfluidic cancer test leverages SU2C boost

Feb. 1, 2011
Massachusetts General Hospital researchers were among five "Dream Teams" selected from 237 submissions by Stand Up to Cancer.

Massachusetts General Hospital (MGH; Boston, MA) researchers were among five "Dream Teams" selected from 237 submissions by Stand Up to Cancer (SU2C; www.standup2cancer.org) who received grants to bring ground-breaking cancer technologies from the lab to the bedside. Officially entitled "Bioengineering and Clinical Applications of Circulating Tumor Cells Chip," the MGH project aims to eventually commercialize its circulating-tumor-cell (CTC) technology—a microfluidic chip technology sensitive enough to detect a single cancer cell among a billion blood cells under test.

The first-generation CTC-chip consists of a lithographically fabricated microfluidic channel layer and a second herringbone-patterned layer, both created in photoresist on a silicon wafer. The herringbone pattern passively mixes blood cells by generating microvortices that increase the number of interactions between tumor cells and the surface of the chip, which is coated with antibodies that attract the fluorescent-dye-labeled cancer cells. Fluorescence microscopy then identifies the cancerous tumor cells within the analyzed blood mixture. Next-generation designs to improve sensitivity and clinical user-friendliness are in process. Contact Mehmet Toner at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!