Multiphase piezo nanopositioner dramatically reduces stick-slip aberrations

Sept. 1, 2010
Engineers at Micos USA (Irvine, CA) have developed a multiphase piezo motion technology that significantly reduces the conventional "stick-slip" operation of nanopositioning applications.

Engineers at Micos USA (Irvine, CA) have developed a multiphase piezo motion technology that significantly reduces the conventional "stick-slip" operation of nanopositioning applications. Conventional piezo motors often use stick-slip inertial motion in which the piezo element is connected to an oscillating friction element that moves the sliding friction element forward when the piezo extends due to an applied voltage. When the piezo is fully extended (usually below 1 μm), a fast voltage transition is applied that quickly contracts the piezo, resulting in a fast backward motion of the oscillating friction element during every slip phase, which occurs approximately every 500 nm. The sliding friction element (moving part of the actuator) follows the backward movement to some degree during the slip phase, which results in poor velocity regulation, induced vibration into the system, and lost motion.

The multiphase piezomotor from Micos uses at least two piezos and friction elements that move in unison but slip at different times, minimizing the retract motion induced by the slip forces and significantly reducing or even eliminating altogether the backward motion during the slip phase. For example, one device has 12 mm travel with better than 1 nm motor resolution, 5 nm linear-encoder resolution, and 1 kg horizontal-load capability. Contact Manfred Schneider at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!