Optofluidic system for laser tweezers has no pesky cover slip

Aug. 1, 2010
A new version of a type of optofluidic system designed to be used with laser "tweezers" for 3D manipulation of biological cells under a microscope has been created by researchers at Technische Universitvät Ilmenau (Ilmenau, Germany).

A new version of a type of optofluidic system designed to be used with laser "tweezers" for 3D manipulation of biological cells under a microscope has been created by researchers at Technische Universitvät Ilmenau (Ilmenau, Germany). While the old version requires a 0.17 mm thick glass cover slip between the optofluidic system and the microscope, the new version does not. The new geometry has an important advantage: direct access to the optofluidic system, which allows other analytical tools such as electrodes to be added at any time.

Pre-existing systems of this sort consist of a replicated polydimethylsiloxane (PDMS) fluid-channel system mounted to a standard cover slip; the slip is necessary, as the PDMS channel surfaces, which are created with a silicon or photoresist mold, are not of optical quality. In contrast, the new version is replicated using a polymethylmethacrylate (PMMA) master mold of optical quality, allowing the cover (through which the specimen cells are viewed) to be part of the PDMS channel structure. The PMMA mold is created through micromilling, a precision process that uses a diamond tool with a diameter of 1 mm that rotates at a speed of 55,000 rpm. Optical trapping and viewing of 3 µm polystyrene particles was successfully performed. Contact Stefan Sinzinger at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Horizon Microtechnologies: Coating 3D Printed Parts with Functional Materials

March 28, 2024
Andreas Frölich from Horizon Microtechnologies talks innovations in 3D micro-parts printing with functional materials for various industries.

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!