First carbon-nanotube-based optical component performs wavelength conversion

June 1, 2010
The interaction of carbon nanotubes (CNTs) with the evanescent field of light in the core of a silicon planar waveguide is the basis for the first CNT-based integrated optical component developed by researchers at the University of Tokyo and Alnair Labs Corporation.

The interaction of carbon nanotubes (CNTs) with the evanescent field of light in the core of a silicon planar waveguide is the basis for the first CNT-based integrated optical component developed by researchers at the University of Tokyo and Alnair Labs Corporation (both in Tokyo, Japan). The CNT material—fabricated using a high-pressure carbon-oxygen conversion process creating nanotube diameters and distribution parameters optimized for strong absorption near 1550 nm—is deposited in a spraying process over the 7-µm-wide core of a cladding-removed waveguide fabricated using standard silicon-based planar lightwave circuit (PLC) techniques. The CNTs are believed to have a nonlinear refractive index several orders of magnitude higher than silica, originating from interband transitions of p-electrons causing nonlinear polarization like other highly nonlinear organic optical materials.

Due to strong CNT nonlinearity, pump and signal wavelengths from tunable laser sources input to the device undergo a four-wave mixing process; in effect, the device is an effective wavelength converter, with a nonlinear coefficient as high as 5.64 × 103 W-1km-1. For a 10 Gbit/s data stream, the power penalty was 3 dB for a bit-error rate (BER) of 10-9. The ability to deposit CNTs on a variety of waveguide patterns makes possible devices such as Mach-Zehnder interferometers, while their fast response time (less than 500 fs) enables the development of ultrahigh-speed structures for all-optical signal processing and optical logic gates. Contact Kin Kee Chow at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!