LASER COOLING: Optical refrigerator cools semiconductor payload to 165 K

In optical refrigeration, laser light creates anti-Stokes fluorescence upconversion in a material, which carries heat away from the material. Earlier this year, a group at the University of New Mexico and the Universita di Pisà (Pisa, Italy) demonstrated laser cooling of a ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal to 155 K; however, only the crystal was cooled, and not a useful "payload" in addition.1

Now, the same researchers have used a Yb:YLF crystal to cool a useful semiconductor payload to 165 K.2 This is important because at present, relatively easy-to-use thermoelectric coolers can only cool down to 170 K and thus reaching lower temperatures requires the use of much more complex cryogenic cooling.

At 165 K, the cooling power and cooling load meet at 20 mW.

A realistic payload

The payload was a 2 μm thick gallium arsenide semiconductor passivated by a gallium indium phosphide coating, with a double-heterostructure geometry having a high external quantum efficiency (in other words, it was similar to real-life semiconductor devices, some of which need cooling). It weighed 5 μg, was adhesive-contacted to the Yb:YLF crystal, and was optically transparent at the 1023 nm laser wavelength used for the experiment.

The payload and cooling crystal were placed in a vacuum chamber; a 9 W continuous-wave Yb:YAG thin-disk laser supplied light to the cooling crystal in a nonresonant cavity geometry. A small amount of light from an outside laser diode was coupled into the semiconductor structure to measure its temperature via the shift in bandgap. The temperature of the Yb:YLF crystal itself was measured by monitoring its fluorescence spectrum.

As would be expected, the cooling power of the setup is greatest when the crystal is at room temperature, and declines as its temperature drops. Conversely, at room temperature the cooling load (the amount of heat that must be removed from the crystal to keep it at its current temperature) is zero and rises as the temperature cools. At the temperature where the load and the power are the same, the crystal and its payload can be cooled no further (see figure). At room temperature (300 K), the cooling power of the setup was 140 mW, which dropped to 20 mW at 165 K.

The researchers believe that by reducing radiative load and improving crystal material quality, temperatures down near that of liquid nitrogen (77 K) could be reached.–John Wallace


REFERENCES
1. D.V. Seletskiy et al., Nature Photon., 4, 3, 161 (2010).
2. D.V. Seletskiy et al., Opt. Exp., 18, 17, 18061 (Aug. 16, 2010).

 

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.

RELATED COMPANIES

Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS