Tiniest two-photon MEMS microscope performs brain imaging

Aug. 1, 2009
Researchers at Stanford University (Stanford, CA) have developed an incredibly small two-photon microscope imager that uses a microelectromechanical systems (MEMS) laser-scanning mirror to image (v) the brain of a mouse.

Researchers at Stanford University (Stanford, CA) have developed an incredibly small two-photon microscope imager that uses a microelectromechanical systems (MEMS) laser-scanning mirror to image (v) the brain of a mouse.

Previously devised miniature endoscopes either used a double-clad optical fiber to route fluorescence signals reflected off a MEMS mirror (reducing robustness to light scatter in cases of deep-tissue imaging) or included only spatially filtered images; neither method was shown to be capable of live imaging or of having sufficient sensitivity for fast physiological measurements. Alternatively, the tiny two-photon MEMS imager (only 2.9 g in mass) from Stanford uses a hollow-core bandgap fiber to deliver ultrashort pulses from a tunable Ti:sapphire laser to the microscope. The light is collimated and reflects off the 1 × 1 mm MEMS scanner into an optical assembly comprised of four gradient-index lenses and a dichroic microprism that is focused to the specimen. The full aperture of emissions from the specimen (in this case, the neocortical capillaries and erythrocyte flow in the live brain of an anesthetized mouse) passes back through the optics and into a polymer fiber to a photomultiplier tube for analysis. Illumination power was 27 mW at the sample; eight frames acquired over 2 s at 4 Hz were averaged to obtain the microvasculature images. Contact Mark Schnitzer at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!