Metamaterial with hyperbolic dispersion is 51 µm thick

While the idea of a metamaterial-based invisibility cloak is fascinating, transforming the idea into reality is a daunting task. This is especially true at optical frequencies, where the required metamaterial structures have geometries with features sized at the nanometer scale. Making an invisibility cloak, or indeed many other devices made possible by metamaterials, requires the construction of a bulk (3-D) metamaterial, as opposed to a thin-film (2-D) version. Rather than trying to make a 3-D metamaterial using difficult and expensive nanolithographic techniques, researchers at Norfolk State University (Norfolk, VA) and Purdue University (West Lafayette, IN) have been working on a much simpler approach that now has allowed them to create an optical metamaterial 51 µm thick.

An anodic alumina membrane, 1 cm × 1 cm × 51 µm and naturally full of 35 nm holes, became the base material; silver was electrochemically plated in the holes, mostly filling them up and creating an irregular array of parallel nanowires. Angles of refraction in the material were studied at different wavelengths, revealing that the metamaterial has hyperbolic dispersion for wavelengths greater than 0.84 µm; in addition, the direction of refraction for 632.8 nm light was consistent with a refractive index of less than 1. Contact Mikhail Noginov at mnoginov@nsu.edu.

50 YEARS OF SOLID-STATE LASERS


A long way from the ruby laser

Most Popular Articles

Webcasts

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS