400 fJ/bit silicon ‘transmitter’ uses all CMOS processes

Researchers at Sun Microsystems Physical Sciences Center (San Diego, CA), Sun Laboratories (Menlo, Park, CA), and Luxtera (Carlsbad, CA) have built the lowest-energy-per-bit silicon (Si) communications transmitter (modulator plus driver circuits) to date using all complementary metal-oxide semiconductor (CMOS) processes.

Click here to enlarge image

The key elements of an energy-efficient Si-based interconnect for inter- and intra-chip optical communications are a low-power modulator, a low-power driver circuit, and efficient integration of these two components. For the modulator, the researchers fabricated a ring resonator (15 µm in radius) using the Luxtera-Freescale 130 nm silicon-on-insulator (SOI) CMOS process, with grating couplers used for the optical input and output ports with surface-normal coupling. The modulator was then integrated with a separate driver circuit fabricated in its own CMOS process using flip-chip integration. The hybrid assembly was die-attached and wire-bonded to a printed circuit board and placed on a heat sink for thermal stability. Using an off-chip laser source, stable error-free transmission with a bit-error rate lower than 10-15 at a data rate of 5 Gbit/s was achieved with a power consumption of 1.95 mW, representing a record-low energy consumption of less than 400 fJ/bit. Contact Ashok Krishnamoorthy at ashok.krishnamoorthy@sun.com.

Most Popular Articles

Webcasts

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Miniature Spectrometers for Narrowband Laser Characterization

In less than 60 years, lasers have transformed from the imagined “ray gun” of science fiction int...
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS