Light-driven brake stops molecular machines

July 1, 2008
Molecular machines (either synthetic or biological) are defined as molecules or groups of molecules that perform mechanical-like movements in response to certain stimuli (light, electricity, or chemical energy).

Molecular machines (either synthetic or biological) are defined as molecules or groups of molecules that perform mechanical-like movements in response to certain stimuli (light, electricity, or chemical energy). Because a braking system is important for any moving object, researchers at National Taiwan University and Academia Sinica (both in Taipei, Taiwan) have developed the first light-driven, room-temperature molecular brake.

Based on nuclear magnetic resonance (NMR) studies, spectral simulations, and molecular modeling, it is possible to calculate the rotation rate of the rigid pentiptycene group, a four-bladed wheel structure that can exhibit two different motion states (trans-1 and cis-1). In dichloromethane solution at 298 K, the pentiptycene wheel freely rotates in a trans-1 state but slows by nine orders of magnitude in the cis-1 state. The two states can be switched by using different wavelengths of light (306 and 254 nm) due to the wavelength-sensitive dinitrostyryl group within the pentiptycene. This molecular “brake” could be attached to other molecular machines in solution to effectively control or stop their motion as a function of illumination wavelength. Contact Jye-Shane Yang at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!