3-D holographic display is updatable and rewritable

Researchers from the University of Arizona, in conjunction with Nitto Denko Technical Corporation (Oceanside, CA), have created a holographic three-dimensional (3-D) display that can record and display new images every few minutes. The display can record an image in a matter of minutes, can be viewed for several hours without the need to refresh or wear special eyewear, and can be erased and updated with new images when desired.

Click here to enlarge image

The key, according to researcher Savas Tay, is the photorefractive polymers on which the display is based. To be suitable for 3-D displays, photorefractive polymers must have nearly 100% diffraction efficiency, fast writing time, hours of image persistence, rapid erasure, and large area—a combination of properties that was not available before. Tay and colleagues have developed a composite that consists of a copolymer with a hole-transporting moiety and a carbaldehyde aniline group, attached through an alkoxy linker. Images are written into the polyacrylate tetraphenyldiaminobiphenyl-type polymer using a 532 nm laser and an externally applied electric field. The scientists take pictures of an object or scene from many 2-D perspectives, and the holographic display assembles the two-dimensional perspectives into a 3-D picture. The nonlinear optical properties were achieved by adding a fluorinated dicyanostryrene chromophore. The composite was formed into thin-film devices by melting it between two indium tin oxide-coated glass electrodes. The resulting prototype is the largest photorefractive 3-D display achieved to date (4 × 4 in.) and is scalable to full parallax and color. Contact Savas Tay at savas.tay@optics.arizona.edu.

Most Popular Articles


Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.


Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.


Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....

Social Activity

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS