Near-infrared photoacoustics enhance tissue and tumor imaging

Feb. 1, 2008
Researchers in the Photoacoustic Imaging Group at the University College London (England) have developed a prototype photoacoustic imaging system that could significantly improve the detection and treatment of tumors, diseased blood vessels, and other soft-tissue conditions.

Researchers in the Photoacoustic Imaging Group at the University College London (England) have developed a prototype photoacoustic imaging system that could significantly improve the detection and treatment of tumors, diseased blood vessels, and other soft-tissue conditions. The system uses extremely short pulses of low-level near-infrared laser energy to stimulate the emission of ultrasonic acoustic waves from the tissue area being examined. In operation, nanosecond pulses of near-infrared laser energy cause the target tissue to undergo a tiny rise in temperature and a tiny expansion, both of which contribute to the generation of small ultrasonic acoustic waves. These waves are then converted into high-resolution 3-D images of tissue structure.

The prototype instrument has been specifically designed to image very small (micron size) blood vessels relatively close to the tissue surface, utilizing a proprietary optical detector. Information generated about the distribution and density of these microvessels can in turn provide valuable data about skin tumors, vascular lesions, burns, other soft-tissue damage, and even how well an area of tissue has responded to plastic surgery following an operation. The technique is also capable of imaging deeper (to several centimeters) if piezoelectric detectors are used instead, although the tradeoff is reduced spatial resolution. “This new system offers the prospect of safe, noninvasive medical imaging of unprecedented quality,” says Paul Beard, who leads the Photoacoustic Imaging Group. “It also has the potential to be an extremely versatile, relatively inexpensive and even portable imaging option.” Contact Paul Beard at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Horizon Microtechnologies: Coating 3D Printed Parts with Functional Materials

March 28, 2024
Andreas Frölich from Horizon Microtechnologies talks innovations in 3D micro-parts printing with functional materials for various industries.

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!