Asymmetric optical potential barrier becomes Maxwell’s demon

The hypothetical Maxwell’s demon opens and closes a tiny trapdoor dividing two containers of gas to shuttle atoms one way without exerting effort, raising the number of atoms in one container and lowering it in the other, apparently in violation of the second law of thermodynamics. Researchers at the University of Oregon (Eugene, OR) have created a Maxwell’s demon using an asymmetric optical potential barrier—although, as with any practical realization of such a demon, further investigation shows that the second law is always conserved.

Click here to enlarge image

Approximately 3 × 104 rubidium (87Rb) atoms at about 30 µK from a standard six-beam magneto-optic trap are loaded into a dipole trap, which has a 9.3 W beam from a 1090 nm fiber laser focused to a 31 µm waist. Two additional beams separated by 34 µm form the one-way barrier; the main beam is stabilized on a dip in the 85Rb saturated-absorption spectrum, which is at a frequency 1.16 GHz higher than that of the other (repumping) beam. After 100 ms, most of the atoms end up on one side of the trap; however, the spontaneous scattering of a barrier photon in each “trap-door” interaction carries away entropy, conserving the second law. Contact Daniel Steck at dsteck@uoregon.edu.

Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

X-PD

Fiber optics Partial discharge sensors and system

O-LASE

OEM high power fiber laser module up to 1.5 kW

X-LASE 24-6

Picosecond pulsed fiber laser, Average power: 24W

RELATED COMPANIES

QPS Photronics Inc

Provides Fabry-Perot FBG interference cavity and related components, Laser cavity FBG P...

Ancal Inc

Supplies miniature fiber optic spectrometers, spectroradiometers, fiber optic light sou...

Barcor Inc

Manufactures stock and custom fiber optic illumination systems including fiber optic li...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS