BIOMEDICAL OPTICS: Surface reflections reveal hidden eye misalignments

A compact and robust instrument based on recording Purkinje images (reflections of light from ocular surfaces) measures the alignment of optical surfaces in living eyes.


Purkinje images have been a traditional source of information in studying the optics of the eye. A light source illuminating the eye generates specular reflections at the different ocular interfaces (air-cornea, cornea-aqueous, aqueous-crystalline lens, and lens-vitreous) that are commonly named Purkinje images (PI, PII, PIII, and PIV, respectively), after Jan Purkinje, a Czech physiologist that made use of them in the 19th century.

In the early times of physiological optics, these Purkinje images were the primary source used to obtain information about ocular structures such as an understanding of the accommodation mechanism (the autofocus system for near vision), the calculation of the radii of curvature of the ocular components, or the estimation of the alignment axes of the human eye.1 However, because early experiments used the reflection of candle light to generate Purkinje images, quantitative results were limited.

Purkinje applications

The advent of new optical technologies including CCD cameras and light sources such as lasers and light-emitting diodes (LEDs) opened many practical possibilities for the use of Purkinje images to further study ocular optics. In step with these developments, advanced ocular surgeries have created a variety of applications for ocular optics. After cataract surgery, the decentration and tilt of implanted intraocular lenses are important aspects of stable optical performance.2, 3, 4 Other clinical applications include the use of Purkinje images for the screening of strabismus and other fluctuations of the ocular axes.5 Yet another popular application is the development of dual eye-trackers that make use of the corneal reflection (PI) and the lens posterior reflection (PIV).

We have recently developed a Purkinje-based instrument that can be used in some of these potential clinical applications and that also serves as a tool for basic studies in the human eye.6 The instrument is especially relevant to confirming recent discoveries of the relationship between aberrations of the ocular components (cornea and crystalline lens) and the natural alignment properties of the eye.7

Instrument specifics

Our instrument uses a semicircular array of infrared LEDs to generate PI (air-cornea interface), PIII (aqueous-crystalline lens interface), and PIV (lens-vitreous interface) Purkinje images. In an ideal case when the optical components of the eye are all well-aligned, a computer simulation of the reflection pattern from an eye model that is perfectly aligned with the semicircular source would present three well-aligned semicircular rings (see Fig. 1). This nonsymmetrical source is used because of the typical optical properties of the eye: the magnification for PIV has a sign opposite to that of the magnification of PI and PIII. Also, it is interesting to note that PIII has a typical size of around twice PI and PIV. Besides the semicircular LED source, it is also possible to use other types of sources.8

FIGURE 1. A computer simulation of the reflection pattern from a model eye that is perfectly aligned with a semicircular LED source presents three well-aligned semicircular rings, each corresponding to a reflected Purkinje image of a particular ocular surface (left). Separately, the Purkinje images (right) are denoted as PI (air-cornea interface), PIII (aqueous-crystalline lens interface), and PIV (lens-vitreous interface); note that the PIII image is typically twice as large as PI and PIV. (Courtesy of Universidad de Murcia)
Click here to enlarge image

When a human eye fixates to a point, Purkinje images are typically seen misaligned. There are three possible causes for this: a global eye rotation, lens decentration, and lens tilt. These three causes are each physiologically plausible and they can act in combination. Alignment of PI, PIII, and PIV is not possible when any of these three conditions are present.

However, it is always possible to align PIII and PIV (lens reflections) by moving the source in front of the eye or, similarly, changing the fixation of the eye with respect to a fixed source. The overlapping position of PIII and PIV provides the location of the optical axis of the crystalline lens. The angular distance from the centrally aligned fixation point to that fixation when overlapping occurs will approximate lens tilt (with respect to the line of sight). And the distance from the geometrical pupil center to the overlapping point of PIII and PIV gives an estimation of lens decentration.

This procedure is implemented in the measurement instrument by making the subject fixate sequentially at nine different angular targets (see Fig. 2). The more peripheral points in the fixation LEDs subtend an angle of 5° with respect to the central stimulus. An image of the anterior eye containing Purkinje images is recorded at each fixation position, and the distance from each reflection to the center of the pupil is obtained. These distances are plotted as a function of the angular fixation. From these plots, by linear interpolation (or extrapolation, depending on the subject), the fixation angle where the third and fourth Purkinje images overlap can be determined.

FIGURE 2. When a human eye fixates to a point, Purkinje images can be misaligned, indicating a global eye rotation, lens decentration, or lens tilt. In the optical setup, the person under test changes the fixation of the eye with respect to the fixed LED source (nine different fixation LEDs, as shown at nine different angular positions). It is then possible to align the PIII and PIV Purkinje images for a particular fixation point to determine the misalignment parameters for the eye under test. (Courtesy of Universidad de Murcia)
Click here to enlarge image


Clinical experiments

An example of the procedure for one particular real subject produces complex Purkinje images (see Fig. 3). Nine images-one for each fixation position-display the three reflections PI, PIII, and PIV. The position of each reflection can be located with respect to the pupil center and the overlapping position can be extrapolated. This multiple fixation test makes the instrument especially robust and the simple, compact design makes it appropriate not only for the research lab but also for a clinical environment.

FIGURE 3. Purkinje images at each of nine different fixation points of the eye show the relative position of the PI, PIII, and PIV semicircular interface reflections, revealing information about misalignments within the eye. (Courtesy of Universidad de Murcia)
Click here to enlarge image

One of the most promising applications of the instrument is to measure the misalignment in eyes implanted with intraocular lenses (IOLs). In particular, those eyes implanted with aspheric IOLs have more relevant interest. The aspheric profile of these lenses was designed to compensate for the average spherical aberration of the cornea in a similar way to the situation occurring in young eyes.9, 10 However, this profile renders the eye more sensitive to IOL misalignments and-in the worst possible case-it is possible that the visual benefit achieved with the correction of spherical aberration would be totally reduced by the increase of other off-axis aberrations such as coma. In this context, measurement of the typical misalignments of the IOL has a critical relevance. The instrument presented here has been successfully applied to measure eyes implanted with aspheric lenses. The results have been used to establish the limits of tolerance to decentration and tilt for these IOLs using a customized ray-tracing procedure.11

The application of the instrument for more basic science is also promising. Several studies have shown the compensation effect between corneal and crystalline lens coma aberration. The origin of this systematic effect seems to be related to the alignment properties of the eye, especially due to a systematic horizontal tilt of the ocular optics with respect to the line of sight. Our instrument provides direct and definitive evidence of this effect and can obtain a better description of the optical properties of the eye. Some studies using our instrument have already shown that the main contribution to the compensation effect of the eye is the horizontal tilt component of the eye’s optical components (cornea and crystalline).12


This study was supported in part by the Ministerio de Educación y Ciencia, Spain (grant FIS2004-2153 to PA).


1. H. Hemholtz, “Treatise on Physiological Optics,” Dover, NY (1925).

2. P. Phillips et al., J. Cataract Refract. Surg. 14, 129 (1988).

3. J.D. Auran, C.J. Koester, and A. Donn, Arch. Ophtalmol. 108, 75 (1990).

4. D.L. Guyton, H. Uozato, and H.J. Wisnicki, Ophtalmol. 97, 1259 (1990).

5. J.C. Barry et al., Invest. Ophthalmol. Vis. Sci. 35, 4219 (1994).

6. J. Tabernero et al., Optics Express14, 10945 (2006).

7. P. Artal, A. Benito, and J. Tabernero, J. Vis.6, 1 (2006).

8. P. Rosales and S. Marcos, J. Opt. Soc. Am. A 23, 509 (2006).

9. A. Guirao et al., Arch. Ophthalmol. 120, 1143 (2002).

10. P. Artal et al., J. Vis. 1, 1 (2001).

11. J. Tabernero et al., Invest. Ophthalmol. Vis. Sci. 47, 4651-4658 (2006).

12. P. Artal, J. Tabernero, and A. Benito, Invest. Ophthalmol. Vis. Sci. 47, E-Abstract 1501 (2006).

JUAN TABERNERO is a research student and PABLO ARTAL is a professor at the Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo (CiOyN), 30071 Murcia, Spain; e-mail:;

Most Popular Articles


Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.



AFL Recipient of Three Technology Patents

10/03/2013 Five AFL associates were recognized for receiving patent awards for their work developing new pro...

AFL Introduces Fujikura Fixed V-groove Single Fiber

10/03/2013 AFL introduces the Fujikura 19S fusion splicer, a new fixed v-groove single fiber splicer, the la...

AFL’s Five-Year Warranty Sets New Standard

10/03/2013 AFL increased the warranty period on NOYES® Optical Power Meters (OPM), Optical Light Sources (OL...

AFL Introduces New Family of NYFORS™ Recoating Products

10/03/2013 AFL now offers Nyfors Teknologi AB’s new family of recoating products including the ReCoater 2™, ...
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS