Crack-free gallium nitride layers grow on silicon substrates

July 1, 2006
Researchers at Kansas State University (Manhattan, KS) have reported successful growth of high-quality crack-free gallium nitride (GaN) epilayers on 6-in.-diameter silicon (Si) substrates using metal-organic chemical-vapor deposition to fabricate blue-emitting nitride multiple-quantum-well light-emitting diodes (LEDs).

Researchers at Kansas State University (Manhattan, KS) have reported successful growth of high-quality crack-free gallium nitride (GaN) epilayers on 6-in.-diameter silicon (Si) substrates using metal-organic chemical-vapor deposition to fabricate blue-emitting nitride multiple-quantum-well light-emitting diodes (LEDs). Previously demonstrated nitride growth on Si substrates has been limited to 2 in. for photonic structures and 4 in. for heterojunction field-effect transistors.

For the growth of nitride materials on large-area Si substrates, however, problems associated with cracks and bowing can be severe because of the increased difficulty of maintaining temperature uniformity and mechanical strength over a larger area. The relatively small lattice constant of an aluminum nitride nucleation layer can serve to counterbalance the thermally induced tensile strains by inducing compressive strain on subsequent GaN layers, according to previous studies, thereby supporting the growth of crack-free and relatively thick GaN layers. The Kansas State team has exploited this potential to fabricate 492 nm blue LEDs on a silicon substrate and achieved an optical-power output of about 0.35 mW at 20 mA, measured from the top surface of unpackaged LED chips. Contact Hongxing Jiang at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!