Evanescent waves order 2-D particle arrays

April 1, 2006
Although a light beam incident on the surface of an optically less-dense medium is totally internally reflected above the critical angle, an evanescent wave arises that decays exponentially within the medium and that can exert attractive forces on small particles.

Although a light beam incident on the surface of an optically less-dense medium is totally internally reflected above the critical angle, an evanescent wave arises that decays exponentially within the medium and that can exert attractive forces on small particles. Taking advantage of this force, researchers at the University of Oxford (Oxford, England) have used counterpropagating laser beams to self-assemble submicron particles into 2-D arrays with a rectangular or pseudo-hexagonal packing structure.

Click here to enlarge image

To build the arrays, light from a 1064-nm diode-pumped solid-state laser was focused into a silica prism such that the focal spot of the reflected beam overlapped the incident beam, creating an evanescent wave with a decay length on the order of 800 nm in water. When 500-nm-diameter particles suspended in solution were placed on top of the prism, 2-D ordering of the particles was observed. Unlike optical-tweezer particle arrays formed by spatially varying electric fields, the researchers discovered that ordering arises from scattering of the evanescent laser field by the particles themselves, resulting in a new method for building matter with light and for real-time exploration of the processes that occur during crystal formation. Contact Colin D. Bain at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!