Photonic-crystal fiber supports two modes

Conventional and elliptical-core two-mode optical fibers have been fabricated with wavelength ranges for two-mode operation typically limited to around 150 nm. But researchers at The Hong Kong Polytechnic University (Hong Kong, China) and Beijing Jiaotong University (Beijing, China), have modeled photonic-crystal fibers (PCFs) that can support two-mode operation over wavelength ranges of 1200 nm (from 600 to 1800 nm).1 Two-mode fibers can be used as mode converters, bandpass/bandstop filters, acousto-optic tunable filters, add/drop multiplexers, and fiber sensors.

Typically, a PCF has a solid core surrounded by a holey cladding region. When the ratio of the hole diameter to the hole-spacing pitch is less than 0.45, PCFs can support single-mode operation for any wavelength. When this ratio is large for small hole-spacing pitches (1 to 3 µm), the fibers become nonlinear PCFs, which can be used for supercontinuum generation. For intermediate ratios from approximately 0.45 to 0.65, however, and for wavelengths less than the cutoff wavelength for the PCF, the fiber can support both the fundamental and the second-order modes. For a PCF with a hole spacing of 5 µm and a diameter to hole-spacing ratio of 0.6 at 1550 nm, the mode-field patterns supported are those of the first- and second-order modes only (see figure).

Analysis of the mode field for these two-mode PCFs shows that the mode-field intensity pattern of the four second-­order modes actually varies along the fiber length because of the coherent mixing of the four modes and is not stable against environmental disturbance. The polarization states of the fundamental mode also vary. To solve this problem, the researchers intentionally introduced ­birefringence by modeling air holes with different diameters along the two orthogonal directions of the PCF. By inducing this bi­refringence, the four second-order modes split into two groups, with the cutoff wavelength between the two groups being several hundreds of nanometers or more.

Specially designed two-mode ­photonic-­crystal fibers can be used for numerous applications. The mode-field patterns of the first- and second-order modes of a modeled PCF reveal the two polarizations of the fundamental mode (top) and the four approximately degenerate ­second-order modes (bottom).
Click here to enlarge image

For this high-birefringence PCF, the fundamental mode and the second-­order modes are stable over a wavelength range of 0.6 to 2 µm, covering almost the entire low-loss window of the silica fibers. The confinement losses of the second-­order mode supported by a two-mode PCF were less than 0.025 dB/m for wavelengths below 1800 nm, sufficiently low for many device applications.

Two-mode strain sensorThe researchers have already experimentally demonstrated a two-mode PCF-based interferometric strain sensor at wavelengths from 650 to 1300 nm.2 The sensor uses the interference between the two modes at the output of the fiber. Because of perturbation effects and axial strain, the output intensity distribution varies with the differential phase shifts between two modes.

Another application for a two-mode PCF with a wide wavelength range of operation is a tunable optical filter. The researchers have shown that acoustic flexural waves propagating along optical fibers provide efficient coupling between the fundamental and the second order modes, provided that the acoustic wavelength is matched to the length of the mode beat. The modal beat length of the high-birefringence PCF was found to decrease with wavelength, indicating that the wavelength at which the mode coupling occurs can be controlled by varying the wavelength (frequency) of the acoustic wave.

If light is first launched into the fundamental mode of the PCF, the acoustic wave will couple the light to the second-order mode at a particular optical wavelength, which is determined by the acoustic frequency. Because the second-order mode is less confined than the fundamental mode, it can be removed by a mode stripper. The power carried by the fundamental mode will then experience a high loss at that particular wavelength, forming a bandstop or notch filter. The device can also be configured to function as a bandpass filter by introducing a mode converter just before the mode stripper to convert the fundamental mode to the second-order mode. The center wavelength can be tuned by varying the frequency of the acoustic wave applied to the optical fiber.

“We are currently looking at the possibility of using this fiber for simultaneous measurement of strain and temperature,” says Wei Jin, professor in Electrical Engineering at The Hong Kong Polytechnic University. “The sensitivities of the modal and polarization beat length of the PCF to strain and temperature are quite different and strongly dependent on wavelength. The wide wavelength range for two-mode operation will allow for the implementation of modal and polarimetric interferometer sensors at different operating wavelengths and hence with different strain and temperature sensitivities.”

Gail Overton


1. W. Jin et al., Optics Express 13(6) 2082 (March 21, 2005).

2. J. Ju et al., IEEE Photon. Technol. Lett. 16, 2471 (2004).

Most Popular Articles


Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...
White Papers

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kW-class direct diode lasers

In this paper, laser modules based on newly developed tailored bars are presented. The modules al...

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

Click here to have your products listed in the Laser Focus World Buyers Guide.



AFL’s Five-Year Warranty Sets New Standard

10/03/2013 AFL increased the warranty period on NOYES® Optical Power Meters (OPM), Optical Light Sources (OL...

AFL Introduces New Family of NYFORS™ Recoating Products

10/03/2013 AFL now offers Nyfors Teknologi AB’s new family of recoating products including the ReCoater 2™, ...

AFL Recipient of Three Technology Patents

10/03/2013 Five AFL associates were recognized for receiving patent awards for their work developing new pro...

AFL Introduces Fujikura Fixed V-groove Single Fiber

10/03/2013 AFL introduces the Fujikura 19S fusion splicer, a new fixed v-groove single fiber splicer, the la...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS