Add/drop filter is based on photonic quasicrystals

Add/drop filters that add or remove very narrow wavelengths of light from a broader optical signal being carried down a waveguide have been demonstrated in 2-D photonic crystals (PCs) with a complete photonic bandgap (PBG). Versions of this type of device have been made using silicon, for example, whose relatively high refractive index of 3.5 can be considered not compatible with the low-index materials common in optical telecommunications (optical fibers are made of silica, with a refractive index of 1.5).

An alternative to PCs in this application is the family of photonic ­quasi­crystals (PQCs), which can exhibit a complete PBG without requiring materials with a high refractive-index contrast. A team of researchers from the Tyndall National Institute at the University College Cork (Cork, Ireland), Universität Bonn (Bonn, Germany), and the Technical University of Denmark (Lyngby, Denmark) has demonstrated how a PQC can be a suitable platform for development of an add/drop filter.1 The research was partly funded by the European Commission IST project APPTech, the German Ministry of Education and Research project PCOC and the Science foundation of Ireland.

Photonic quasicrystals are PCs that have scattering centers located in the vertices of a quasiperiodic tiling of space; they have neither true periodicity nor translational symmetry, but have ­quasiperiodicity with a long-range order and orientational symmetry. Octagonal (eightfold), decagonal (tenfold), and dodecagonal (12-fold) symmetries for PQCs have been studied and indicate that these symmetries have wide complete bandgaps and a small threshold value of refractive index for opening a complete gap.

Eightfold symmetry

For the add/drop application, the researchers studied the optical properties of an octagonal lattice of dielectric rods that possesses a full PBG in transverse-mode polarization (electric field parallel to the rod axes), uses low-index materials, and does not require resizing of rods or inclusion of other elements, thus substantially simplifying the fabrication process.

The basic building blocks of an add/drop filter are high-quality--­factor microcavities to provide coupling between waveguide channels. The researchers defined a microcavity inside a square path of PQC by removing two layers of rods around the one located at the geometrical center of the system (see figure). The microcavity supports quadrupole, hexapole, and dipole modes in finite sets (or doubly degenerate modes)-the ideal building block for an add/drop filter. Next, the researchers created a PQC waveguide by removing one or several rows of rods. Finally, integration of the micro­cavity and waveguide produced a PQC add/drop filter.

While the device demonstrated by the researchers shows nearly 100% dropping efficiency and a quality factor close to 700, the overall transmission is fairly small-only 15% of the incident power. The proposed add/drop filter would need to be significantly improved before it can be used for optoelectronics applications. One method of improvement is to use an adiabatic coupler at the input channel to suppress back-reflection due to impedance mismatch. The irregular shape of the PQC boundaries makes the impedance-matching conditions at the air-PQC interface challenging; however, the researchers were able to show that a lattice cut with a plane interface can raise the transmission to 50% of the incoming signal intensity in the spectral region of interest and reduce the crosstalk to the forward-drop channel from 50% to only 20%.

Click here to enlarge image

The researchers believe this is the first such demonstration using a dielectric constant of 5.0 (n = 2.24). "We consider our results the first ¿proof-of-principle¿ demonstration of a photonic integrated component based on the ­photonic-bandgap effect using materials with such a low refractive index. Of course, much additional research and development is necessary to bring such a component to the market," says researcher Dmitry Chigrin. "As a first step toward telecommunications applications, one should redesign the structure using silica or polymer materials. In contrast with photonic crystals, our structure possesses a relatively large bandgap of 5% to 6% in this case, so we are quite optimistic about the prospect of the proposed structure based on silica. This work is in progress."

Postgraduate researcher Javier ­Romero-Vivas says future plans include simulation of their device using a full 3-D model to help understand the scattering and substrate losses and to aid in developing an optimum design. Coupling to conventional optical waveguides will also be addressed, with the eventual possibility of realizing the proposed filter using nanoimprint lithography.

Gail Overton

REFERENCE

1. J. Romero-Vivas et al., Optics Exp. 13(3) 826 (Feb. 7, 2005).

Most Popular Articles

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

PRESS RELEASES

AFL’s Five-Year Warranty Sets New Standard

10/03/2013 AFL increased the warranty period on NOYES® Optical Power Meters (OPM), Optical Light Sources (OL...

AFL Introduces New Family of NYFORS™ Recoating Products

10/03/2013 AFL now offers Nyfors Teknologi AB’s new family of recoating products including the ReCoater 2™, ...

AFL Recipient of Three Technology Patents

10/03/2013 Five AFL associates were recognized for receiving patent awards for their work developing new pro...

AFL Introduces Fujikura Fixed V-groove Single Fiber

10/03/2013 AFL introduces the Fujikura 19S fusion splicer, a new fixed v-groove single fiber splicer, the la...
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS