X-rays trigger gamma rays from hafnium isomer

X-rays trigger gamma rays from hafnium isomer

Prospects for a gamma-ray laser--commonly thought to be impossible due to the cubic dependence of subthreshold spontaneous emission power on frequency--have brightened. Physicists at the University of Texas at Dallas (UTD) describe development of an isomer of hafnium as a potential gamma-ray laser gain medium. With four of its nucleons in an excited metastable state, the isomer has a 31-year half-life and emits cascades of gamma rays when perturbed by soft x-rays. A single 40-keV photon triggers a gamma cascade with energy totaling 2.5 MeV, a 60X enhancement in energy. Produced by a process called proton spallation, the isomeric hafnium is capable of storing 1.3 GJ of releasable energy per gram.

Obtaining a sample of the material from Los Alamos Scientific Laboratory (Los Alamos, NM), the UTD physicists teamed with researchers from five countries to experimentally trigger gamma-ray production. According to Carl Collins at UTD, the cross section of the hafnium is so large that the team was able to use an ordinary dental x-ray machine as the triggering source. As of yet, the emitted gamma rays are not coherent. Contact Carl Collins at cbc@utdallas.gifdu.

Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS