High-quantum-efficiency II-VI photodiode beats silicon in the blue

Feb. 1, 1999
The silicon (Si) PIN photodiode, widely used for the detection of low-power radiation in the 300?500-nm range, now has competition. Researchers at the Physikalishes Institut der Universit?t W?rzburg (W?rzburg, Germany) have fabricated PIN photodiodes of zinc magnesium sulfur selenide (ZnMgSSe), a II-VI semiconductor material that previously was used primarily in the construction of some blue-emitting diode lasers. The ZnMgSSe photodiodes have an external quantum efficiency of 58% at 430 nm and a

High-quantum-efficiency II-VI photodiode beats silicon in the blue

The silicon (Si) PIN photodiode, widely used for the detection of low-power radiation in the 300?500-nm range, now has competition. Researchers at the Physikalishes Institut der Universit?t W?rzburg (W?rzburg, Germany) have fabricated PIN photodiodes of zinc magnesium sulfur selenide (ZnMgSSe), a II-VI semiconductor material that previously was used primarily in the construction of some blue-emitting diode lasers. The ZnMgSSe photodiodes have an external quantum efficiency of 58% at 430 nm and a peak internal quantum efficiency of 80%.

Using molecular-beam epitaxy, the researchers grow the diodes on gallium arsenide substrates. The lattice mismatch between the diode and the substrate is 0.03%. Both x-ray diffraction and low-temperature photoluminescence data show that the photodiodes have low defect densities. The researchers have made diodes with light-sensitive areas of 1, 1.44, 4, 9, and

16 sq mm. The devices all exhibit a sharp cutoff in spectral response, with their quantum efficiency dropping to less than 10?4 for wavelengths longer than 500 nm?an advantage in some applications that require stray-light rejection. The researchers estimate that their photodiodes have a noise-equivalent power below 10?15 W(Hz)1/2/mm2, a figure surpassing ultraviolet-

optimized silicon-based detectors. Contact Markus Ehinger at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!