LEGO blocks prop up optics

Yvonne Carts-Powell

Sometimes equipment that is convenient, cheap, and "good-enough" is preferable to expensive precision components. Franco Quercioli and others at the Istituto Nazionale di Ottica (Institute of Optics; Firenze, Italy) are developing optomechanical components using just such a system--LEGO bricks. The group has developed a variety of optical components built from LEGO blocks and some homemade components that are good enough for teaching and even for some research applications (see photo on p. 26).

Properties of LEGO

The brightly colored building toys have surprisingly useful mechanical properties. Anyone who has played with LEGO blocks knows that the plastic pieces are uniform, light, stick together well, and are sturdy enough to endure even the harshest treatment by children. The bricks are molded from ABS (acrylonitrile butadiene styrene) plastic to geometric tolerances of 0.02 mm and weigh less than 1 g; the force needed to separate two blocks ranges from 1.5 to 3.5 N. In addition to the basic bricks, a range of other elements in the company`s DACTA and TECHNIC product lines include rods, beams, plates, axles, gears, pulleys, hinges, bases (that is, tables), and several sensors and actuators. Some components can be made using only standard LEGO parts, while for others, the researchers machined Plexiglas rods and screws.

Quercioli`s group is not the first to use LEGO parts for technical applications. The annual autonomous-robot competition at the Massachusetts Institute of Technology (Cambridge, MA) provides students with standardized kits from which to build and program robots. The bodies of the robots are built of LEGO parts, including electric motors. In the 1998 competition, robots were designed that were durable enough to intentionally drive off ledges and attack other robots.

The basic components used on an optical table tend not to move as much as a mobile robot, but do need to be stable. Quercioli`s group has made holders, translation and rotary stages, x-y-¥positioners, tilters, laboratory jacks, posts, bases, rails, and breadboards. Using these components, the group has also built more-complex systems, including microscopes and interferometers.

Among the devices demonstrated was a two-mirror beam director that allows fine adjustments to the direction and height of a reflected beam. "Its mechanical stability," say the re searchers, "is comparable with that of a metal-made equivalent component."1 In fact, because LEGO components are designed to be modular, they can be more convenient for adapting to specific needs than regular mounts. Another elegant component is a self-centering mount designed for standard LEGO elements, including hinges that fasten three beams together, and spring-loaded axles that push on the edge of a circular filter.

Linear and rotary translation stages are loaded with either small springs or rubber bands. While the reproducibility of these positioners is not as good as that of precision stages, the positioners are good enough to be used in a Twyman-Green interferometer that the group made from the LEGO components. The success in building this interferometer and the ease of aligning it--a process that took only about 3 min--led the group to build a Mach-Zehnder interferometer, "the most complicated system that we have built thus far," say the researchers.

The researchers write, "The versatility of the LEGO system and the ease with which complicated components and setups can be realized are sometimes almost astonishing." The designs developed by the group thus far are prototypes.


1. F. Quercioli et al., Appl. Opt. 37(16), 3408 (June 1998).

YVONNE CARTS-POWELL is a science writer based in Belmont, MA. She and the younger members of her family are researching the height limits of LEGO towers.

Most Popular Articles


Lens Design – Tools for designing manufacturable aspheres for complex optical assemblies

Designing aspheres that may be successfully fabricated and tested can be a frustrating experience. The range of possible aspheres is much larger than the ran...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

DRS Technologies’ Patented Sensor Technology Revealed

Learn the truth about what’s behind DRS Technologies’ competitive advantage over thermal sensor m...

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.



AFL Recipient of Three Technology Patents

10/03/2013 Five AFL associates were recognized for receiving patent awards for their work developing new pro...

AFL Introduces Fujikura Fixed V-groove Single Fiber

10/03/2013 AFL introduces the Fujikura 19S fusion splicer, a new fixed v-groove single fiber splicer, the la...

AFL’s Five-Year Warranty Sets New Standard

10/03/2013 AFL increased the warranty period on NOYES® Optical Power Meters (OPM), Optical Light Sources (OL...

AFL Introduces New Family of NYFORS™ Recoating Products

10/03/2013 AFL now offers Nyfors Teknologi AB’s new family of recoating products including the ReCoater 2™, ...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS