Inkjet-printed nanoparticle ink can produce security holograms on an industrial scale

Aug. 25, 2017
Stable colloid of europium-doped zirconia nanocrystals has high luminescence and doesn't clog up inkjet printers.

Researchers at ITMO University (St. Petersburg, Russia) have unveiled a new approach to printing luminescent structures based on nanoparticle ink. The unique optical properties of the ink were achieved by means of europium-doped zirconia.1

Particles of this material were proven to be useful in manufacturing luminescent holographic coatings with a high degree of protection. Notably, the developed approach enables the fabrication of custom holograms (including security holograms) by means of a simple inkjet printer. These luminescent nanoparticles can also be used to produce biosensors and to visualize cancer cells.

"Europium-doped zirconium dioxide is a material that has been studied and used by researchers all over the world for decades," says Alexandr Vinogradov, co-author of the research and head of ITMO University’s Biochemistry Cluster. "However, our research is novel in that it uses the material to protect the surface of rainbow holograms. To this end, we had to achieve certain features in the material. In particular, the nanoparticles contained in the ink must be close to identical in size. Strict requirements are also imposed by rheological parameters that determine the viscosity of the material—otherwise, the ink might not be suitable for inkjet printing. Our goal was to transform a material that was initially synthesized in a test tube into a stable colloid that could be printed and applied to any surface. Our study describes the exact process of creating such functional ink."

The researchers note that the product is ready for practical application. The ink is compatible with currently existing printhead types and can be used with existing manufacturing capabilities.

Source: http://news.ifmo.ru/en/science/new_materials/news/6884

REFERENCE:

1. Aleksandra Furasova et al., Nanoscale (2017); doi: 10.1039/C7NR03175K.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!