Mid-IR integrated optical nulling chip developed at ANU will clear the way to see proto-exoplanets

Dec. 7, 2016
Nulling interferometry will cancel the light from the central star, leaving surrounding dust clouds in view.

Stephen Madden and other researchers at the Australian National University (ANU) College of Physical and Mathematical Sciences (Canberra, Australia) have developed a mid-IR (3 to 4.5 μm wavelength region) integrated optical chip for astronomical telescopes that will help astronomers look through dust clouds around stars to find protoplanets and planets that may support life.

The chip uses nulling interferometry to cancel the light from the central star, allowing the surrounding dust clouds to be seen. Optical contrast and penetration through the dust is maximized by using the mid-IR region rather than the visible region. Because the interferometric nulling optics are integrated on a chip, the device is very mechanically stable.

"The ultimate aim of our work with astronomers is to be able to find a planet like Earth that could support life," says Madden. "To do this we need to understand how and where planets form inside dust clouds, and then use this experience to search for planets with an atmosphere containing ozone, which is a strong indicator of life."

Physicists and astronomers at ANU worked on the optical chip with researchers at the University of Sydney and the Australian Astronomical Observatory. The researchers aim to take their first mid-IR images at the Subaru Telescope on Mauna Kea in Hawaii.

Sources:

http://www.anu.edu.au/news/all-news/new-telescope-chip-offers-clear-view-of-alien-planets

https://researchers.anu.edu.au/researchers/madden-sj

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!