Tiger Optics’ CRDS gas analyzer gives NASA’s Juno spacecraft mission a successful start

Sept. 21, 2016
The cavity ring-down spectroscopy instrument ensures moisture-free spacecraft at launch.

When NASA’s Juno spacecraft successfully entered Jupiter’s orbit in July of this year (2016), capping its five-year journey from Cape Canaveral, and captured the first-ever images of Jupiter’s polar regions, a cavity ring-down spectroscopy (CRDS)-based gas analyzer made by Tiger Optics (Warrington, PA) had everything to do with the prime condition of the spacecraft’s scientific payload; prior to Juno’s launch on August 5, 2011, the trace-gas analyzer helped NASA keep the scientific payload in prime condition.

As demonstrated in the Juno mission, Tiger Optics’ HALO trace-gas analyzer played a critical role in detecting contaminants that could compromise the performance of Juno’s scientific instruments in space. Such scientific instruments are designed to operate in the vacuum of space, in the absence of chemicals present in the earth’s atmosphere: water, oxygen, and particulate matter.

Prior to launch, the space-bound instruments must be protected from earthly contaminants by storing the payload under a flow of high-purity inert gas. Nitrogen is usually the inert gas chosen for the task. Typically, the moisture level in NASA’s high-purity nitrogen must be kept under 1 part per million (ppm). Tiger Optics’ HALO H2O analyzer easily handled that requirement for the Juno mission, as the device measures moisture in a range from 2 parts per billion (ppb) to 20 ppm.

After Juno entered Jupiter’s orbit on July 4, NASA scientists powered up the science instruments aboard the spacecraft for its first close flyby of the planet on August 27. On September 2, NASA reported that all eight of Juno’s science instruments were successfully energized and collecting data. Indeed, on the first of 36 scheduled orbital flybys, six megabytes of data were collected during the six-hour transit of the spacecraft from above Jupiter’s north pole to below its south pole. While analysis of the data is ongoing, NASA quickly published the first-ever images of Jupiter’s north pole.

Tiger Optics notes that its CRDS-based instruments gas analyzers and atmospheric and environmental monitors are used in ultraclean environments such as semiconductor fabs as well as harsh environments like coal-fired stacks.

For more info, see http://www.tigeroptics.com.

Source: Tiger Optics

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!