Photoshop-like algorithms boost response of distributed optical fiber sensors (see video)

March 3, 2016
2D and 3D image-processing algorithms enhance the spatial and temporal info measured along a sensing fiber.
A still from the video below shows a distributed-sensing fiber (upper left) and a signal in the process of being cleaned up with an image-processing algorithm. (Video: EPFL)
Optical specialty fibers containing fiber Bragg gratings or other sensing components allow the measurement of pressure, temperature, mechanical strain, acoustic signals, and other physical quantities at many places along these fibers as a function of time. But how to best handle the flood of spatial and temporal data from a sensing fiber up to 100 km long? Researchers at the Swiss Federal Institute of Technology (EPFL) Group for Fibre Optics (GFO; Lausanne, Switzerland) are now applying image-processing algorithms, similar to those used in Photoshop, to this problem.1 “We have no trouble getting a million measurement points from one optical fiber the width of a hair, for a resolution of one cm over 10 km,” says Luc Thévenaz, the director of GFO. Not only is this is 100 times more precise than current techniques, but the technique requires no hardware modifications.Getting rid of parasites Measurements made with distributed-sensing fibers have to be processed, because the measurement include noise in the form of so-called “parasites.” But the ratio between useful signals and noise cannot go below a certain threshold, otherwise the measurements will not be reliable. The EPFL researchers were able to boost this ratio significantly by borrowing a technology from graphic arts. “The values collected from these measurement points on the fiber can be represented as a matrix of pixels — a two-dimensional image,” says Thévenaz. "By applying standard graphic filters to this image, like those found in Photoshop, we were able to reduce the noise inherent in this measurement technique very effectively and identify the desired values more precisely.”
(Video: EPFL)
Pursuing this logic further, his teams also transformed more complex measurements, which take into account several parameters simultaneously, into video sequences. In this case, standard video-processing filters were used. These approaches are, by definition, less expensive than adding more measuring instruments. The performance-enhancement technique works because there is a high level of similarity and redundancy in the multidimensional information measured by distributed fiber sensors. Source: http://actu.epfl.ch/news/photoshop-filters-for-safer-bridges/ REFERENCE: 1. Marcelo A. Soto et al., Nature Communications, 1 March 2016; doi:10.1038/ncomms10870 (Note: this paper was simultaneously published in Light: Science & Applications — Nature and Nature Communications)

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!