New type of optical wavefront sensor is based on quasiparticles

Dec. 8, 2015
Technique uses attenuated total internal reflection to see across the wavefront at the nanoscale level.
The optical setup (DM = deformable mirror; HS WFS = Hartmann–Shack wavefront sensor, which the setup includes for comparison). (Image: OSA)
Researchers Brian Vohnsen and Denise Valente at University College Dublin, Ireland, have created a new type of wavefront sensor based on sensing of plasmonic "quasiparticles" that can measure wavefront slopes across a beam of light down into the nanoscale region.1 This is in contrast to Hartmann-Shack (HS) wavefront sensors that sample the wavefront at lateral distances of 100 μm or more. And, in contrast to interferometric methods of wavefront sensing, the quasiparticle method is requires the measurement of only a single wavefront and thus does not require getting two separate wavefronts to be in phase. The technique is potentially useful for adaptive-optical (AO) applications such as microscopy and biomedicine, as well as in other applications in metrology, chemical sensing, and quality-contol inspection of planar materials, films, and coatings.
Using quasiparticles practically
The sensor technology is based on a curious phenomenon: a quasiparticle that emerges when light waves couple with electron oscillations at certain types of solid surfaces. By measuring how efficiently incoming light creates these quasiparticles, the researchers are able to derive previously undetectable distortions in the wavefronts. Based on attenuated total internal reflection, the technique sees wavefront slopes as intensity differences across the beam produced by surface-plasmon polariton (SPP) excitation at the surface of a gold film. The result (a map of wavelength slope) is integrated to produce the wavefront shape.

(Image: OSA)

The resonance behavior of the SPP quasiparticles responds to even extremely small-scale wavefront distortions. SPPs arise when a wavefront meets an electrically conducting surface at a specific angle; at the point where they interact, electrons oscillate, forming a wave-like pulse that travels across the surface. Any changes in that angle, as would occur from a distortion in the wavefront, would affect the way the SPPs are formed. This then directly effects how much light is reflected back from the surface.

It is this change in reflected intensity that the researchers measure. To fully reconstruct the wavefront, the system requires two separate measurements made at 90º to one another, which are then integrated to produce the wavefront. The speed of the measurement is only limited by the speed of the cameras.

The researchers are working to overcome two limitations in the current setup. The first is the requirement for simultaneous measurement of wavefront changes with two cameras. The second is improving the method by which the SPPs are excited on the surface of the gold film.

Source: OSA

REFERENCE:

1. Brian Vohnsen and Denise Valente, Optica, Vol. 2, Issue 12, pp. 1024-1027 (2015); https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-2-12-1024&id=333151

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!