Two-photon polymerization produces micrometer-sized swimming actuators for bioscience

Nov. 19, 2014
Using a combination of two-photon polymerization and directed nanoparticle self-organization, researchers at ETH Zurich (Switzerland) have created microscopic actuators that swim through fluids and can carry bioactive molecules.
Microactuators of differing helical shapes are produced via two-hoton polymerization. The swimming actuators can be coated with active biological compounds. (Illustration: Peters C et al. Advanced Functional Materials 2014, reprinted with permission of Wiley)

Using two-photon polymerization along with directed nanoparticle self-organization, researchers at ETH Zurich (Switzerland) have created microscopic actuators that swim through fluids and can carry bioactive molecules.1

The elongated actuator elements possess a helical shape and are driven by an external rotating magnetic field; they align themselves along the magnetic field lines and rotate about their longitudinal axis. Due to their shape, they swim via wobble-free corkscrew motion.

Microscopic 3D printing
The scientists used a light-sensitive, biocompatible epoxy resin in which they incorporated magnetic nanoparticles. In the first part of the curing stage, they exposed a thin layer of this material to a magnetic field, which magnetized the nanoparticles, leading to a particle rearrangement in the form of parallel lines. The researchers then manufactured the tiny elongated structures out of the modified epoxy film via two-photon polymerization, in which a laser beam was moved in a computer-controlled, 3D path within the epoxy resin layer, thus curing the resin locally. Uncured areas were then washed away with a solvent.

The resulting helical structures are 60 μm in length and 9 μm in diameter and have a magnetization perpendicular to the longitudinal axis. A conventional manufacturing method would not have allowed the production of an object with such magnetic properties, as the preferred magnetization is usually in the direction of the longitudinal axis of an object.

Previous microactuators usually took the shape of a corkscrew, but the ETH scientists were able to produce modified shapes similar to twisted strips and double-twisted wires. Tests showed that these forms swim as fast as corkscrew-shaped actuators; however, the new shapes differ from the latter in that their surface is two to four times larger, enabling them to carry heavier loads of bioactive molecules such as antibodies.

Source: https://www.ethz.ch/en/news-and-events/eth-news/news/2014/11/better-micro-actuators-to-transport-materials-in-liquids.html

REFERENCE:

1. C. Peters et al., Advanced Functional Materials (2014) doi: 10.1002/adfm.201400596

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Semrock Optical Filters Resources

March 19, 2024
Looking for more information about Semrock optical filters? Explore sets by fluorophore, download the 2023 Semrock catalog and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!