Photon Systems Deep-UV NeCu laser to power Mars 2020 Raman fluorescence instrument

Aug. 11, 2014
A narrow-linewidth, deep-UV laser developed by Photon Systems is at the heart of the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument that was selected by NASA for the Mars 2020 rover arm.

A narrow-linewidth, deep-UV laser developed by Photon Systems (Covina, CA) is at the heart of Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument that was selected by NASA for the Mars 2020 rover arm. SHERLOC is a deep-UV fluorescence/Raman instrument that enables spatial mapping of fluorescence emissions and Raman scatter of organics and astrobiologically relevant minerals on abraded surfaces and boreholes created by the rover coring system.

RELATED ARTICLE: 1064 nm Raman filters from Iridian reduce fluorescence interference

The Photon Systems 400 gram neon-copper (NeCu) laser provides excitation at 248.6 nm with a linewidth less than 0.5 pm. Its sub-250 nm excitation is key to enabling simultaneous detection of Raman and fluorescence emissions. The Photon Systems NeCu laser turns on instantly without the need for preheating, warm-up, or temperature regulation at ambient temperatures in a range from minus 135 to plus 70 degrees Celsius. The laser has been tested over these temperature extremes as well as at three times the shock and vibration limits imposed for similar Mars missions without failure. Photon Systems says these lasers have previously been vetted on many expeditions to harsh environments on Earth such as Antarctica, the Arctic, and the deep Ocean.

SOURCE: Photon Systems; http://www.photonsystems.com/downloads/sherloc_jpl.pdf

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!