Waveguide optical modulator and tunable filter fabricated using standard CMOS techniques

Feb. 19, 2014
Boulder, CO--Silicon-photonics researchers from the University of Colorado Boulder, Massachusetts Institute of Technology (MIT; Cambridge, MA), and the University of California, Berkeley have created a waveguide optical modulator and a waveguide tunable optical filter that not only are as energy-efficient as some of the best previous devices around, say the researchers, but were built using a standard IBM CMOS process.

Boulder, CO--Silicon-photonics researchers from the University of Colorado, Boulder, Massachusetts Institute of Technology (MIT; Cambridge, MA), and the University of California, Berkeley have created a waveguide optical modulator and a waveguide tunable optical filter that not only are as energy-efficient as some of the best previous devices around, say the researchers, but were built using a standard IBM advanced CMOS process.

"As far as we know, we're the first ones to get silicon photonics natively integrated into an advanced CMOS process and to achieve energy efficiencies that are very competitive with electronics," said Mark Wade of the University of Colorado, Boulder, who will present his team’s work at OFC.

Researchers anticipate that integrated photonic computing and data communications will be at least 10 times more energy efficient than electronics. Chip-to-chip communication links using these photonic devices could have at least 10 times higher bandwidth density.

But so far, Wade explains, photonic devices used in chip-to-chip communication have been primarily custom-built using specialized methods, limiting their commercial applicability; pre-existing devices that have been created with more standardized techniques rely on older technology, which limits their ability to compete with cutting-edge electronics.

"IBM’s CMOS process has already been commercially proven to make high-quality microelectronics products," Wade says. The work was part of the U.S. Defense Advanced Research Projects Agency’s (DARPA's) Photonically Optimized Embedded Microprocessors (POEM) project.

Presentation Tu2E.7, titled “Energy-efficient active photonics in a zero-change, state-of-the-art CMOS process,” will take place Tuesday, March 11 at 3:30 p.m. in room 123 of the Moscone Center.

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!