SUNY nanosheets could radically improve low-light imaging

Smaller, more efficient nanosheet photodetectors from SUNY researchers could lead to vastly improved low-light imaging equipment. (Image credit: SUNY)

IMAGE: Smaller, more efficient nanosheet photodetectors from SUNY researchers could lead to vastly improved low-light imaging equipment. (Image credit: SUNY)

Albany, NY--Research by a team of State University of New York (SUNY) College of Nanoscale Science and Engineering (CNSE) scientists published in ACS Nano (see http://pubs.acs.org/doi/pdf/10.1021/nn405037s) describing the development of ultrathin "nanosheets" could make blurry nighttime pictures a thing of the past. The SUNY CNSE researchers say that the technology enables pictures to be captured in extremely low-light settings and could dramatically improve the performance of cell phone cameras, video cameras, medical imaging equipment such as MRI machines, and even solar cells.

The thin photodetectors would also be cost-effective to implement. The ultrathin indium (III) selenide (In2Se3)-based photodetectors use less material because they consist of nanosized components that are highly efficient at detecting light in real-time. As a result, this technology is perfectly suited for inclusion in a wide variety of everyday devices, including today's smartphones, which are often used to take pictures but still suffer from limitations such as an inability to take clear photos in low-light environments. This research could allow even novice photographers to be able to take sharper images in such dark situations, such as when a child is blowing out birthday candles in a dimly lit room.

"Currently, the sensors in digital cameras cannot take quality images under low-light conditions. For example, taking a good picture in a dimly lit room requires a long exposure which often results in a blurred image. Hollywood needs to use special lights and filters to make a scene appear dark because filming must be done in well-lit conditions. Future cameras based on these nanosheet photodetectors may be able to provide a robust, real-time picture in even the most extreme low-light conditions." said Robin Jacobs-Gedrim, CNSE Research Assistant. "Our work could also lead to next-generation applications, making solar panels more efficient, scientific instruments more precise, and medical imaging equipment even more accurate, which shows the power of CNSE's nano-based research to find technological solutions for a range of industries."

Bin Yu, CNSE professor of Nanoengineering, said, "This research is exciting not only because it is a further testament to the caliber of CNSE's scientists and state-of-the-art facilities, but also because it could lead to more efficient imaging devices for the improvement of healthcare, the advancement of real-time video recording, and the development of more efficient photovoltaics, all of which have the potential to improve countless lives."

CNSE (http://www.sunycnse.com) is a university-driven research enterprise, with more than $20 billion in high-tech investments and over 300 corporate partners. The 1.3 million-square-foot Albany NanoTech megaplex is home to more than 3100 scientists, researchers, engineers, students, and faculty. CNSE maintains a statewide footprint, operating the Smart Cities Technology Innovation Center (SCiTI) at Kiernan Plaza in Albany, the Solar Energy Development Center in Halfmoon, the Photovoltaic Manufacturing and Technology Development Facility in Rochester, and the Smart System Technology and Commercialization Center (STC) in Canandaigua.  CNSE co-founded and manages the Computer Chip Commercialization Center (Quad-C) at SUNYIT, and is lead developer of the Marcy Nanocenter site in Utica, as well as the Riverbend Green Energy Hub, High-Tech Manufacturing Innovation Hub, and Medical Innovation and Commercialization Hub, all in Buffalo.

SOURCE: SUNY; http://www.sunycnse.com/leadingedgeresearchanddevelopment/researchprofiles.aspx

50 YEARS OF SOLID-STATE LASERS


A long way from the ruby laser

Most Popular Articles

Webcasts

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS