Pulsed terahertz quantum-cascade laser has peak power of 1.01 W

Feb. 17, 2014
Leeds, England--A 3.4-THz-emitting quantum-cascade laser (QCL) created by a group at the School of Electronic and Electrical Engineering, University of Leeds, reaches a pulsed peak power of up to 10.01 W from a single facet when cooled to 10 K.

Leeds, England--A 3.4-THz-emitting quantum-cascade laser (QCL) created by a group at the School of Electronic and Electrical Engineering, University of Leeds, reaches a pulsed peak power of up to 1.01 W from a single facet when cooled to 10 K.1 The laser output is achieved using a broad-area configuration.

An aluminum gallium arsenide- based (Al0.16Ga0.84As/GaAs) heterostructure was grown on a semi-insulating GaAs substrate; ridges of widths from 145 to 425 μm were pholithographically created. In the experiment, the lasers were pulsed at 10 kHz and a 2% duty cycle and cooled by liquid helium.

A version with a 3-mm-long cavity and a 425-μm-wide ridge emitted a peak power of 780 mW; when one facet was coated with a high-reflectivity coating, the peak power was boosted to 1.01 W.

This output more than doubles the output levels in terahertz QCLs developed ar the Massachusetts Institute of Technology (MIT; Cambridge, MA) and subsequently by a team from the Vienna University of Technology (Vienna, Austria) last year.

Widely publicized potential applications of terahertz radiation include monitoring pharmaceutical products, remote sensing of chemical signatures of explosives in unopened envelopes, and noninvasive detection of cancers in the human body. “Although it is possible to build large instruments that generate powerful beams of terahertz radiation, these instruments are only useful for a limited set of applications," says Edmund Linfield, one of the University of Leeds researchers. "We need terahertz lasers that not only offer high power but are also portable and low cost."

The quantum cascade terahertz lasers being developed by Leeds are only a few square millimeters in size.

The work was mainly funded by the Engineering and Physical Sciences Research Council (EPSRC; Swindon, England).

REFERENCE:

1. Lianhe Li et al., Electronics Letters (2014); doi: 10.1049/el.2013.4035

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!