Lens developed for hard x-ray nanoprobe beamline achieves 11 nm focal spot

Image shows propagation of a reconstructed wavefront, revealing the focusing performance of a multilayer Laue lens developed for the HXN Beamline at NSLS-II. (Image: BNL)

Upton, NY--At the National Synchrotron Light Source II (NSLS-II) now under construction at Brookhaven National Laboratory (BNL), 12 keV x-rays produced by the Hard X-ray Nanoprobe beamline (HXN) have now been focused down to an 11 nm spot size.1 The BNL researchers used a novel x-ray optic called a multilayer Laue lens (MLL), which consists of nested approximately cylindrical layers that focus hard x-rays via grazing incidence.

The researchers analyzed their MLL's focusing performance using a technique known as ptychography. "With ptychography, we can visualize how the x-rays are traveling from the lens to the focus and to an arbitrary point in the optical path. Therefore, we do not have to use conventional knife-edge scans to quantify lens aberrations," says Xiaojing Huang, one of the researchers. The ptychography analysis quantified the lens aberrations at a 0.3 wave period, very close to a quarter wave period. This represents a rigorous threshold value for "diffraction-limited" focusing.

The NSLS-II will enable scientists to image structures at ever-smaller spatial scales. HXN's long-range goal is to achieve a resolution of 1 nm. Hard x-rays exhibit excellent structural, elemental and chemical sensitivity and are particularly suited for in-situ studies that are challenging for electrons.

The Brookhaven-fabricated MLL has a 43-micron aperture (the largest yet reported MLL size). It accepts substantially more x-rays than earlier MLLs and offers a significantly larger working distance, needed for in-situ experiments. It also contains a total of 6,510 layers, with thicknesses ranging from 4 to 21 nm.

Source: http://www.bnl.gov/newsroom/news.php?a=24676


1. Xiaojing Huang et al., Scientific Reports 3, Article number: 3562. DOI: 10.1038/srep03562




Most Popular Articles


Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.


AFL Secures Patent for OTDR Technology

10/03/2013 AFL has been awarded a patent for “Optical Time Domain Reflectometer,” US Patent 8,411,259. The p...
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS