Qualcomm smartwatch has MEMS-based interferometrically modulated reflective color display


(Image: Qualcomm)

San Diego, CA--Qualcomm, which has been developing an interferometric microelectromechanical systems (MEMS)-based reflective color display called Mirasol (originally created by Iridigm Display Corporation, which Qualcomm acquired in 2004), has now introduced a "smartwatch" containing the display; the touchscreen watch pairs via Bluetooth to Android phones (but not iPhones, unfortunately).

The 1.55 in. Mirasol display itself has a 288 x 192 pixel resolution, is visible in bright sunlight, and has a front/edge-illuminated screen for use in dim light (a similar approach to that of Amazon's E-ink-based Kindle). Although the resolution is low (and the display technology has been around for quite awhile), the device is an attempt to desmonstrate the display technology to a wider audience, with improvements in resolution likely coming in future devices.

How it works
Each pixel of the display consists of a thin, reflective membrane that rests a very small distance away from the glass -- small enough for white-light interference effects to occur similar to those seen on oil films on water (the gap could be a single wavelength or small multiple of wavelengths). Because the film is conductive, the gap forming the resulting resonant cavity can be changed by applying a voltage, drawing the membrane toward the glass and shifting the resonance to the UV, therefore producing black. Lowering the voltage results in an interference-produced color.

With ideal coatings on the film and glass, the reflection at a single color can be very high. Practically, this means bright colors when seen in sunlight or room light, as well as low power consumption.

Qualcomm says the watch can operate for multiple days between charges.

For more info, see: http://www.qualcomm.com/mirasol

Most Popular Articles


Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...
Technical Digests

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.


Phantom v1610

Phantom v1610 high-speed digital camera can shoot 1 million FPS.

Phantom v711

Phantom v711 high-speed digital camera

Evolve 128 EMCCD Camera

Quantitative high performance with extreme sensitivity for low-light applications.


Surface Optics Corp

Designs and manufactures hyperspectral and multispectral imagers operating from the ult...

Optics Balzers AG

Possesses comprehensive know-how in optical thin-film coatings and components, glass pr...

Cremat Inc

Manufactures and supplies charge-sensitive preamplifiers for use in nuclear and x-ray d...
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS