Zinc oxide UV photodetectors made of nanotetrapods can be fabricated in air ovens

Nov. 19, 2013
Kiel, Germany--Scientists at Kiel University have created nanostructured zinc oxide (ZnO) UV photodetectors using a new single-step flame-transport-synthesis process. The result is a network of interconnected zinc oxide nanotetrapods forming a bridge between electrodes on a chip.

Kiel, Germany--Scientists at Kiel University have created nanostructured zinc oxide (ZnO) UV photodetectors using a new single-step flame-transport-synthesis process.1 The result is a network of interconnected ZnO nanotetrapods forming a bridge between electrodes on a chip.

Silicon or gallium nitride based UV detectors are already available in the market; however they lack a certain level of selectivity and also cannot function in harsh environments. High production costs, multistep processes, and the requirement of specific operating conditions limit the field of application for these sensors.

Making ZnO nanotetrapods

A simple oven or airbrush gun-type burner is used to create the high temperatures needed to convert zinc microparticles into nano-tetrapods. The process takes place in a normal air environment, with the necessary amount of oxygen regulated by the flame itself. "This burner-flame transport synthesis method allows us to grow the zinc oxide nano-microstructures directly on the chip," says Yogendra Kumar Mishra, the main author of the study. "And that only takes a few seconds; it is just a matter of driving the chip through the flame while the nanotetrapods assemble themselves onto it."

When building a sensor device from nanostructures, one of the biggest challenges is interconnecting them to electrical contacts on chips, says Dawit Gedamu, the first author of the paper. Most of the existing synthesis methods, such as chemical vapor deposition (CVD) or vapor-liquid-solid (VLS) growth, only allow synthesis of different nanostructures under specific conditions. For instance, the presence of catalytic particles, particular substrates, complex temperature requirements and atmospheric conditions, and other factors must be met.

The ZnO sensors are "extremely promising," says Mishra. "Nanostructures made from zinc oxide are highly interesting for multifunctional applications, due to their sensibility to UV light and their electrical and mechanical properties." In addition, ZnO is relatively inexpensive and easy to synthesize. The ZnO sensor reacts to UV light within milliseconds of its exposure; in addition, it works in rather rough environments. The next logical step for the Kiel University scientists is therefore to find the ways to produce these nano-tetrapods on a larger scale.

REFERENCE:

1. Dawit Gedamu et al., Advanced Materials (2013); doi: 10.1002/adma.201304363

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!