Terahertz laser produces a peak power of 940 mW at about 4 THz

THz_laser
A thumb (and finger as well) dwarf a terahertz-emitting quantum-cascade laser that puts out a peak power of almost a watt. (Image: Vienna University of Technology)


Vienna, Austria--A dual-facet pulsed quantum-cascade laser (QCL) that emits terahertz radiation with a center wavelength of 3.9 THz and a (very) broad bandwidth of 0.42 THz was created by researchers at the Vienna University of Technology (TU VIenna).1 The device puts out 470 mW peak power per facet, for a total of 940 mW. Pulse durations were about 200 ns, with a pulse repetition rate of 10 kHz, but gated to emit at 10 Hz.

Although the TU Vienna pulsed terahertz QCL puts out a peak power of almost a watt, keep in mind that its average optical power is much lower -- on the order of a couple of miiliwatts at 10 kHz and a couple of microwatts at 10 Hz. For comparison, a continuous-wave (CW) QCL recently developed by a Swiss group produces 3 mW of terahertz optical power.

To achieve its maximum peak power, the TU Vienna QCL must be operated at 5 K (liquid-helium temperature), but can be operated at a reduced output at temperatures up to 122 K. At the liquid-nitrogen temperature of 70 K, the device puts out a peak power of about 600 mW (300 mW per facet).

The researchers joined two gallium arsenide (GaAs) symmetrical laser structures (GaAs/Al0.15Ga0.85As heterostructures) together via direct wafer bonding; the joining results in a nonlinear growth of about fourfold in laser-light production. In fact, joining more than two structures in this way could lead to a further boost in output, say the researchers.

REFERENCE:

1. Martin Brandstetter et al., Applied Physics Letters 103, 171113 (2013); doi: 10.1063/1.4826943



Most Popular Articles

Webcasts

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...
Technical Digests

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

P-series 1470nm to 1550 nm

Ultra-High Brightness Direct Diode Lasers 20W to 135W

T-Series 915nm, 940nm, or 976nm

Ultra-High Brightness Direct Diode Lasers 85W to 575W

PCB Laser Marking System

PCB Laser Marking Systems

RELATED COMPANIES

Lighthouse Photonics Inc

Provides sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS) lasers for s...

Fibertek Inc

Specializes in the design, development, manufacture, and testing of advanced diode-pump...

Control Micro Systems Inc

Offers laser marking, laser cutting, laser drilling and laser welding systems for a wid...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS