'Universal' matter-wave interferometer relies on laser-produced ionization gratings

matter_wave
Three pulsed laser gratings in a matter-wave interferometer flash for only a few nanoseconds each. (Copyright: J. Rodewald/QNP/University of Vienna)


Vienna, Austria--Researchers at the University of Vienna have created what they call a universal matter-wave closed-path interferometer; the gratings that steer the beams of matter and cause them to interfere are formed by three pulses of a standing ultraviolet (UV) laser beam that create periodic arrays of ions.1 The researchers say that their interferometer is potentially capable of working with forms of matter ranging from atoms to atom clusters, molecules, and even nanospheres; so far, the researchers have observed the interference of fast molecular clusters with a composite de Broglie wavelength as small as 275 fm.


The three gratings, which have periods down to 80 nm, are created by nanosecond laser pulses, and therefore exist themselves for only about a nanosecond (and never simultaneously). "Interferometry in the time-domain with pulsed light gratings will become a central element of quantum experiments with nanoparticles," says Philipp Haslinger of the University of Vienna, who is the lead author of the paper.

Matter-wave interferometry has a longstanding tradition at the University of Vienna, where the first quantum interference of large molecules was observed in 1999.

The project is supported within the Austrian Science Fund (FWF) and the Austrian Ministry of Science (BMWF). The experiments were performed within the Vienna Center for Quantum Science and Technology, VCQ, at the Faculty of Physics, University of Vienna.

REFERENCE:

1. Philipp Haslinger et al., Nature Physics (2013), doi:10.1038/nphys2542



Most Popular Articles

Webcasts

Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...
Sponsored by

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

UV/VIS/NIR Spectrometers, Light sources and Accessories

UV/VIS/NIR Spectrometers, Light sources and Accessories

Light Measurement Instrumentation

Gigahertz-Optik manufactures innovative light measurement instrumentation for specifica...

Custom Low Loss AR Coatings for High Power Lenses

For CW applications requiring very low absorption coatings, PPC utilizes in house Photo...

RELATED COMPANIES

Stanford Photonics Inc

Provides leading-edge electronic imaging equipment, digital microscope cameras, and pho...

Photon Control Inc

Designs and builds precision measuring sensors, flow meters and other measurement tools...

Instrument Systems GmbH

Manufactures a line of measurement solutions to determine radiometric and photometric p...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS