Doped YAG coilable crystal fiber grant awarded to Shasta Crystals

Jan. 4, 2013
San Francisco, CA--A NSF SBIR Phase I grant entitled "Coilable Single Crystal Fibers of Doped YAG for High Power Laser Applications" was awarded to Shasta Crystals.

San Francisco, CA--A National Science Foundation (NSF; Arlington, VA) Small Business Innovation Research (SBIR) Phase I grant entitled: "Coilable Single Crystal Fibers of Doped YAG for High Power Laser Applications" was awarded to Shasta Crystals. The grants awards the company $150,000 to perform research into the feasibility of growing doped yttrium aluminum garnet (YAG) optical fibers of sufficient quality to improve the performance of high-power fiber lasers.

Shasta's CEO Gisele Maxwell said, "We greatly appreciate the support of the NSF in this area of materials science. Single-crystal fibers can act as an intermediate between laser crystals and doped glass fibers, to guide laser light with the efficiencies found in bulk crystals. Our goal is to make a cladded flexible fiber with a core of dopant that will exhibit good waveguiding properties."

Shasta Crystals is a crystal growth company making advanced materials that are critical components in laser systems for a variety of markets including industrial, medical, scientific, military, and consumer electronics. Shasta specializes in the use of the Laser Heated Pedestal Growth (LHPG) technology that allows rapid growth of crystal fibers with a variety of dopants.

SOURCE: Shasta Crystals via PR Newswire; www.prnewswire.com/news-releases/shasta-crystals-receives-nsf-phase-i-grant-award-185451112.html

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!