Superconducting nanowire single-photon detector has near-unity detection efficiency

Jan. 27, 2013
Karlsruhe, Germany--A single-photon detector that combines near-unity detection efficiency with high timing resolution and a very low error rate has been created by researchers at the Karlsruhe Institute of Technology (KIT), Yale University, Boston University, and Moscow State Pedagogical University.

Karlsruhe, Germany--A single-photon detector that combines near-unity detection efficiency with high timing resolution and a very low error rate has been created by researchers at the Karlsruhe Institute of Technology (KIT), Yale University, Boston University, and Moscow State Pedagogical University.1 The group achieved this by integrating superconducting nanowire detectors on top of nanophotonic waveguides to greatly increase the absorption length for incoming photons.

The single-photon detection efficiency reaches up to 91% at a 1550 nm wavelength, a number that was consistent across several fabricated chips. The new design also provides ultrashort timing jitter of 18 ps. Such qualities, along with a dark-count rate as low as 50 Hz, make this integrated detector a prime candidate for optical data transmission and quantum computation.

The fabrication method makes it possible to integrate several hundreds of these detectors on a single chip (a basic precondition for future use in optical quantum computers). The same detector architecture could also be used for wavelengths in the range of visible light.

REFERENCE:

1. W. H. P. Pernice et al., Nature Communications, (27 December 2012), doi:10.1038/ncomms2307

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!