Optical strontium clock is now better candidate for 'new' second

strontium_clock
Strontium atoms are cooled and stored in an ultra-high-vacuum chamber. One of the blue fluorescent blobs is a cloud of cold strontium atoms. (Photo: PTB)

 

Braunschweig, Germany--Scientists at the Physikalisch-Technische Bundesanstalt (PTB) have measured the influence of the ambient temperature on strontium atoms for the first time, potentially reducing the measurement uncertainty of optical strontium clocks by one order of magnitude.1 Such clocks, which use neutral strontium atoms as the frequency generator, are considered one of the top candidates for the definition of a "new" second.


Previously, the influence of the ambient temperature could only be derived theoretically. The PTB results might well spark interest also in geodesy and in fundamental physical research (helping to answer the question as to whether fundamental constants such as the fine-structure constant are really constant).

Due to the higher frequency of optical radiation, optical clocks are more accurate than microwave clocks, which are currently used in the form of cesium atomic clocks to "produce" the second. In an optical strontium clock, a cloud of neutral strontium atoms is cooled down in two steps by means of laser radiation until the atoms exhibit a speed of only a few centimeters per second. An optical lattice ensures that the atoms are trapped.

Ambient temprature the problem
Unfortunately, strontium atoms react relatively strongly to changes in the ambient temperature; their atomic levels are then shifted in energy, which causes the clock to become inaccurate. This is the greatest contribution to the uncertainty of this type of clock.

To measure this phenomenon, the PTB scientists amplified it by using a static electric field rather than the alternating electromagnetic field of blackbody radiation. They constructed a parallel-plate capacitor whose electric field is known to a few-tens-ppm accuracy. For this purpose, the distance between the two plates, which amounted to 0.5 cm, may only vary by a few 100 nm over its length of 7 cm; the same applies to the accuracy of the distance.

The PTB scientists measured the influence of electromagnetic fields on the two decisive (for their clock) eigenstates in the strontium atom. In this way, they determined its uncertainty contribution to the total measurement uncertainty to 5 x 10-18. Because just this influence had, to date, been the most restrictive influence on the total measurement uncertainty, one can expect the next frequency measurements of the clock as a whole to lie well below the previously attained 1 x 10-16.

REFERENCE:
1. Middelmann, T. et al., Physical Review Letters, 109, 263004 (2012) http://prl.aps.org/abstract/PRL/v109/i26/e263004


Most Popular Articles

Webcasts

Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...
Sponsored by

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

RELATED COMPANIES

Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS