Nikon and A*STAR to set up joint R&D lab for advanced 193-nm lithography technology

Singapore--Semiconductor-research specialist A*STAR Institute of Microelectronics (IME) and Nikon Corporation (Tokyo, Japan) will be setting up an R&D laboratory in Singapore to develop advanced optical-lithography technology for the 193 nm argon fluoride (ArF) excimer-laser wavelength. The intent is to push semiconductor-chip geometries down below 20 nm.

Nikon and IME will extend ArF deep-ultraviolet (DUV) dry and immersion lithography by further developing multiple patterning and directed self-assembly techniques. The partners hope to use the technology to make more-advanced logic, high-density memory, embedded non-volatile memory, high-speed electronics and nanophotonics, and nano-electromechanical systems (NEMS). Nikon has been in the optical lithographic equipment market since the 1980s.

Optical lithography at 193 nm has been around for years and is used, for example, in the production of Intel's current 22 nm Ivy Bridge CPU chips. Going much below 22 nm in feature size is a challenge, although Intel is aiming to hit 14 nm in 2014. When conventional 193 nm lithography optics is used, the idea will be to apply further photoresist and exposure tricks (multiple exposures and so on), relying on the nonlinear properties of resist to give a boost to what amounts to superresolution techniques.

Nikon and IME's other approach -- directed self-assembly -- is a radical departure from conventional lithography; in this technique, nanosized building blocks (such as nanospheres) are made to assemble to create the photomask required for exposure. This is called a "bottom-up" technique, as opposed to conventional lithography's "top-down" approach.

The main challenger to Nikon and IME's research effort will be extreme UV (EUV) lithography, which is now in the R&D stage; it uses light at a 14 nm wavelength and precision mirrored optics to greatly increase optical resolution in a straightforward way (in other words, not relying on nonlinear resist effects). Cymer (San Diego, CA) is developing the light source and ASML (Veldhoven, The Netherlands) the scanning and exposure equipment for this approach (in fact, ASML is buying Cymer). Nikon is also involved in developing EUV systems.

Most Popular Articles


Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.


AFL Secures Patent for OTDR Technology

10/03/2013 AFL has been awarded a patent for “Optical Time Domain Reflectometer,” US Patent 8,411,259. The p...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS