Nikon and A*STAR to set up joint R&D lab for advanced 193-nm lithography technology

Singapore--Semiconductor-research specialist A*STAR Institute of Microelectronics (IME) and Nikon Corporation (Tokyo, Japan) will be setting up an R&D laboratory in Singapore to develop advanced optical-lithography technology for the 193 nm argon fluoride (ArF) excimer-laser wavelength. The intent is to push semiconductor-chip geometries down below 20 nm.

Nikon and IME will extend ArF deep-ultraviolet (DUV) dry and immersion lithography by further developing multiple patterning and directed self-assembly techniques. The partners hope to use the technology to make more-advanced logic, high-density memory, embedded non-volatile memory, high-speed electronics and nanophotonics, and nano-electromechanical systems (NEMS). Nikon has been in the optical lithographic equipment market since the 1980s.

Optical lithography at 193 nm has been around for years and is used, for example, in the production of Intel's current 22 nm Ivy Bridge CPU chips. Going much below 22 nm in feature size is a challenge, although Intel is aiming to hit 14 nm in 2014. When conventional 193 nm lithography optics is used, the idea will be to apply further photoresist and exposure tricks (multiple exposures and so on), relying on the nonlinear properties of resist to give a boost to what amounts to superresolution techniques.

Nikon and IME's other approach -- directed self-assembly -- is a radical departure from conventional lithography; in this technique, nanosized building blocks (such as nanospheres) are made to assemble to create the photomask required for exposure. This is called a "bottom-up" technique, as opposed to conventional lithography's "top-down" approach.

The main challenger to Nikon and IME's research effort will be extreme UV (EUV) lithography, which is now in the R&D stage; it uses light at a 14 nm wavelength and precision mirrored optics to greatly increase optical resolution in a straightforward way (in other words, not relying on nonlinear resist effects). Cymer (San Diego, CA) is developing the light source and ASML (Veldhoven, The Netherlands) the scanning and exposure equipment for this approach (in fact, ASML is buying Cymer). Nikon is also involved in developing EUV systems.


A long way from the ruby laser

Most Popular Articles


Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS