Bodkin Design gets SBIR to develop switchable polarimetric camera for unmanned aircraft systems

USAF_UAV
The U.S. Air Force's MQ-1 Predator. Bodkin Design & Engineering has an SBIR to develop a switchable polarizing camera element for use in UAVs. (Photo courtesy of United States Air Force)

 

Newton, MA--Bodkin Design & Engineering, LLC (BD&E) was awarded a Phase I Small Business Innovation Research program (SBIR) contract by the U.S. Air Force to develop a switchable polarizing camera element for aerial surveillance from unmanned aerial vehicles (UAVs). When retrofitted to an IR camera, the device can switch from high-resolution IR imaging mode to a polarimetric IR imaging mode.


Polarimetric imaging can improve the detection of targets under tree canopies, in camouflage, and in cluttered environments, separating man-made objects such as vehicles and buildings from clutter in a reconnaissance scene. Flat surfaces on these objects partially polarize both reflected light and thermally emitted radiation.

Current polarimetric imaging technology uses either multiple cameras with multiple filters or a single camera with time multiplexing. Multiple cameras and filters yield high-resolution polarimetric images of the scene, but lead to large and expensive systems. Time multiplexing produces high-resolution imagery but at a slower data rate and can suffer from temporal artifacts.

BD&E is designing an instrument that will map polarimetric information simultaneously onto a single focal plane, with the focal plane divided into sections for each type of information; this eliminates temporal artifacts and makes a more rugged imager, says BD&E. The design has no moving parts, is compact and adaptable to existing camera systems, and can rapidly switch between polarimetric and high-resolution imagery.

BD&E has contracts with the U.S. Army, Air Force, Navy, and Missile Defense Agency for several optical-engineering projects.


Most Popular Articles

Webcasts

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...
Technical Digests

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom v1610

Phantom v1610 high-speed digital camera can shoot 1 million FPS.

Phantom v711

Phantom v711 high-speed digital camera

Evolve 128 EMCCD Camera

Quantitative high performance with extreme sensitivity for low-light applications.

RELATED COMPANIES

Surface Optics Corp

Designs and manufactures hyperspectral and multispectral imagers operating from the ult...

Optics Balzers AG

Possesses comprehensive know-how in optical thin-film coatings and components, glass pr...

Cremat Inc

Manufactures and supplies charge-sensitive preamplifiers for use in nuclear and x-ray d...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS