Field-induced polymer electroluminescent (FIPEL) lights don’t flicker, shatter, or burn out

FIPEL
Wake Forest University physics professor David Carroll works with graduate student Greg Smith on FIPEL lighting technology. (Image: Ken Bennett, Wake Forest University photographer)


Winston-Salem, NC--Scientists at Wake Forest University have developed a flicker-free, shatterproof alternative to the standard fluorescent tube for large-scale lighting: field-induced polymer electroluminescent (FIPEL) technology. The researchers says that FIPEL gives off soft white light -- not the sometimes yellowish color from fluorescents or the bluish tinge from many LED lamps.

The FIPEL lamp relies on a nano-engineered polymer matrix to convert electrical charge into light. The research supporting the technology is described in a study appearing online in advance of publication in the peer-reviewed journal Organic Electronics.

The device is made of three layers of moldable white-emitting polymer blended with a small amount of multiwalled carbon nanotubes (MWNTs) that glow when stimulated by an AC field to create bright white light similar to the sunlight human eyes prefer. However, it can be made in any color and any shape, from 2x4-foot sheets to replace office lighting, to a bulb with Edison sockets to fit household lamps and light fixtures.

This new lighting solution is at least twice as efficient as compact fluorescent (CFL) bulbs and on par with LEDs, say the researchers, noting that FIPEL bulbs don't shatter and contaminate the surroundings with mercury like CFLs.

Beyond office and home lighting, scientist David Carroll of Wake Forest sees potential uses for large display lighting, from store marquees to signs on buses and subway cars. FIPELs also are long-lasting; Carroll says he has one that has worked for about a decade.

Wake Forest is working with a company to manufacture the technology and plans to have it ready for consumers as early as next year.

For more info, see: http://www.sciencedirect.com/science/article/pii/S1566119912004831



Most Popular Articles

Webcasts

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...
White Papers

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS