Laser uranium enrichment plant licensed by US NRC

Washington, DC--Following decades in development, the US Nuclear Regulatory Commission (NRC) has issued a license to GE Hitachi Global Laser Enrichment LLC (GLE) to construct and operate a commercial uranium enrichment plant using molecular laser isotope separation technology known as Silex. The plant will be constructed on 100 acres of the 1,600 acre GE campus north of Wilmington, NC, which is also home to GE Nuclear's world headquarters, GE Hitachi Nuclear Energy, and a GE Aviation facility.

The license authorizes GLE to enrich uranium up to 8 percent by weight in the fissile isotope U-235, using the laser-based technology. This low-enriched uranium will be used in fuel for commercial nuclear power reactors.

The Silex technology has been licensed from Australian scientists Michael Goldsworth and Horst Struve, who founded Silex Systems Ltd (ASX: SLX; Lucas Heights, NSW, Australia). Details are highly classified as well as proprietary, but it’s believed to rely on 16 µm excitation of UF6 molecules containing U-235, followed by a second excitation step that frees a fluorine atom from the excited molecules, producing solid UF5 that settles out from the gaseous UF6.

Silex says only that its process can increase U-235 concentration by a factor of 2 to 20, but the exact number is classified. In any case, that’s a higher factor than the 1.3 for centrifuge enrichment and 1.004 for gaseous diffusion. Such a high enrichment factor would reduce both capital equipment and operating costs, giving lasers an advantage over the older processes.

The plant and the Silex process have been controversial because, with little known about Silex technology, assessing its potential impact on nuclear proliferation is difficult.

Chris Monetta, President and CEO of GLE says, “The technology we’ve developed could be one of the keys to the USA’s long-term energy security. At a minimum, it could provide a steady supply of uranium enriched right here in the USA to the country’s nuclear reactors. These reactors provide approximately 20 percent of the nation’s electricity today and will continue to be an important part of the energy mix for decades to come.”

Most Popular Articles


Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...
White Papers

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kW-class direct diode lasers

In this paper, laser modules based on newly developed tailored bars are presented. The modules al...

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS