Attosecond pulses measure ultrafast photoionization processes

Daejeon, Korea--Researchers at the Korea Advanced Institute of Science and Technology (KAIST) successfully measured the exact status of the rapidly changing Helium atom using an attosecond pulse, making possible the precise measurement of many ultrafast phenomena in nature.

Professor Nam Chang Hee led the research team and PhD Kim Kyung Taek and professor Choi Nak Ryul also participated in the research. Conducted under the support of the Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation, the research result was published in Physical Review Letters on March 2.

Nam Chang Hee's research team used attosecond X-ray pulses and femtosecond laser pulse to photoionize helium atoms, and measure the wave speed of the produced electron to closely investigate the ultrafast photoionization process. The researchers say they have succeeded in producing the shortest 60 attosecond pulse in the world using high-harmonic waves.

Hee said, "This research precisely measured the exact status of rapidly changing Helium atoms. I am planning to research on measuring the ultrafast phenomena inside atoms and molecules and controlling the status of the atoms and molecules based on the research result."

SOURCE: KAIST; www.kaist.edu/edu.html

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

Understanding Polarization and Optical Coatings

Light is an electromagnetic wave, but, at optical frequencies, it is its electric field that interacts with materials, with the direction of the electric fie...

In-Situ Infrared Sensing using Calibration-Free Scanned-WMS Laser Absorption Spectroscopy

This presentation will discuss the range of sensing capabilities offered by scanned-WMS in the near- and mid-infrared and provide several examples of impleme...

Mid-infrared lasers in remote chemical sensing – from stand-off detection to atmospheric sounding

In this webcast, Gerard Wysocki of MIRTHE will discuss the unique remote-sensing capabilities enabled by modern mid-infrared (mid-IR) lasers and novel spectr...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

White Papers

Tamarisk® Custom Lens Calibration

Though the Tamarisk product line is optimally designed to suit a variety of end-uses, DRS has dev...

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS