Nuclear clock could keep time with the Universe

Sydney, Australia--A proposed new laser-assisted time-keeping system (a single-ion clock) from The University of New South Wales and collaborators (UNSW) tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 billion years--the age of the Universe. "This is nearly 100 times more accurate than the best atomic clocks we have now," says one of the researchers, Scientia professor Victor Flambaum, who is head of Theoretical Physics in the UNSW School of Physics.

In a paper to be published in Physical Review Letters with U.S. researchers at the Georgia Institute of Technology and the University of Nevada, Flambaum and UNSW colleague Vladimir Dzuba report that their proposed single-ion clock would be accurate to 19 decimal places. "Atomic clocks use the orbiting electrons of an atom as the clock pendulum. But we have shown that by using lasers to orient the electrons in a very specific way, one can use the orbiting neutron of an atomic nucleus as the clock pendulum, making a so-called nuclear clock with unparalleled accuracy." Flambaum adds, "It would allow scientists to test fundamental physical theories at unprecedented levels of precision and provide an unmatched tool for applied physics research."

The exquisite accuracy of atomic clocks is widely used in applications ranging from GPS navigation systems and high-bandwidth data transfer to tests of fundamental physics and system synchronization in particle accelerators. "With these clocks currently pushing up against significant accuracy limitations, a next-generation system is desired to explore the realms of extreme measurement precision and further diversified applications unreachable by atomic clocks," says professor Flambaum.

Because the neutron is held so tightly to the nucleus, its oscillation rate is almost completely unaffected by any external perturbations, unlike those of an atomic clock’s electrons, which are much more loosely bound.  

SOURCE: The University of New South Wales;

IMAGE: A new laser-assisted nuclear clock keeps time accuracy on the order of fractions of a second over 14 billion years--the estimated age of the Universe. (Courtesy The University of New South Wales)  

A new laser-assisted nuclear clock keeps time accuracy on the order of fractions of a second over 14 billion years--the estimated age of the Universe


A long way from the ruby laser

Most Popular Articles


Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS