Nuclear clock could keep time with the Universe

Sydney, Australia--A proposed new laser-assisted time-keeping system (a single-ion clock) from The University of New South Wales and collaborators (UNSW) tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 billion years--the age of the Universe. "This is nearly 100 times more accurate than the best atomic clocks we have now," says one of the researchers, Scientia professor Victor Flambaum, who is head of Theoretical Physics in the UNSW School of Physics.

In a paper to be published in Physical Review Letters with U.S. researchers at the Georgia Institute of Technology and the University of Nevada, Flambaum and UNSW colleague Vladimir Dzuba report that their proposed single-ion clock would be accurate to 19 decimal places. "Atomic clocks use the orbiting electrons of an atom as the clock pendulum. But we have shown that by using lasers to orient the electrons in a very specific way, one can use the orbiting neutron of an atomic nucleus as the clock pendulum, making a so-called nuclear clock with unparalleled accuracy." Flambaum adds, "It would allow scientists to test fundamental physical theories at unprecedented levels of precision and provide an unmatched tool for applied physics research."

The exquisite accuracy of atomic clocks is widely used in applications ranging from GPS navigation systems and high-bandwidth data transfer to tests of fundamental physics and system synchronization in particle accelerators. "With these clocks currently pushing up against significant accuracy limitations, a next-generation system is desired to explore the realms of extreme measurement precision and further diversified applications unreachable by atomic clocks," says professor Flambaum.

Because the neutron is held so tightly to the nucleus, its oscillation rate is almost completely unaffected by any external perturbations, unlike those of an atomic clock’s electrons, which are much more loosely bound.  

SOURCE: The University of New South Wales; https://newsroom.unsw.edu.au/news/science/nuclear-clock-may-keep-time-universe

IMAGE: A new laser-assisted nuclear clock keeps time accuracy on the order of fractions of a second over 14 billion years--the estimated age of the Universe. (Courtesy The University of New South Wales)  

A new laser-assisted nuclear clock keeps time accuracy on the order of fractions of a second over 14 billion years--the estimated age of the Universe

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

Lens Design – Tools for designing manufacturable aspheres for complex optical assemblies

Designing aspheres that may be successfully fabricated and tested can be a frustrating experience. The range of possible aspheres is much larger than the ran...

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

DRS Technologies’ Patented Sensor Technology Revealed

Learn the truth about what’s behind DRS Technologies’ competitive advantage over thermal sensor m...

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Miniature Spectrometers for Narrowband Laser Characterization

In less than 60 years, lasers have transformed from the imagined “ray gun” of science fiction int...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

AFL Releases FlexTester OTDR and Loss Test Set with Link Map

12/19/2014 AFL released LinkMap™ with Pass/Fail option for its OFL280 and FLX380 FlexTester family of all-in...

New Optical Wavelength Meters

09/07/2011 –Bristol Instruments, Inc., founded by three former employees of Burleigh, has announced the intr...

Bristol Instruments Introduces Laser Spectrum Analyzer

09/07/2011 Bristol Instruments Introduces Laser Spectrum Analyzer for Infrared Lasers Complete wavelength an...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS