Polymer nanowires fabricated by pulsed laser irradiation

Jan. 10, 2012
Tsukuba, Japan--Scientists at the National Institute for Materials Science (NIMS) have selectively grown polymer nanowires using only irradiation with a pulsed laser, in a region limited to the area of irradiation.

Tsukuba, Japan--Scientists at the National Institute for Materials Science (NIMS) have selectively grown polymer nanowires using only irradiation with a pulsed laser, in a region limited to the area of irradiation. They have also succeeded in doping the nanowires with various species of nanomaterials.

Polymer nanowires are extremely flexible and optically transparent, and could have wide application in nanodevices such as sensors, light-emitting devices, optical switches, and others. However, there have been two problems. One was the need to substantially reduce the size of the nanowire, and the other was that lack of ability to add various dopants to impart new functions. In the present work, the NIMS researchers described a simple method using only a pulsed laseran approach very different from the conventional fabrication methodand simultaneously solved the two persistent problems.

Nanodevices have attracted attention because new functions can be obtained by utilizing the so-called quantum-size effect. To obtain this effect, it is necessary to reduce the diameter of nanowires down to several 10 nm or less. Molds are used in the conventional nanowire fabrication technique, but fabrication by this method had been limited to comparatively thick wires with diameters of several hundreds of nanometers. Furthermore, with the conventional technique, polymer nanowires were extracted from the mold by etching away the mold with a strong chemical agent, and it was only possible to use polymers that would not be damaged by the chemical.

In the new research, the NIMS team (at the Nano Electronic Materials Unit) irradiated a highly-controlled laser on the material without using a mold, causing a nanowire to form at the position of irradiation as though growing. Various dopants could be added to the starting material.

Practical application of the resulting polymer materials is expected in fields such as wiring for flexible substrates of smart phones, where increasingly active development is anticipated, and in flexible high-magnetic-permeability materials in antennas for portable electronic devices, where miniaturization is required.

Source: http://www.researchsea.com/

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!